Wir präsentieren ein Protokoll zum zählen von Hartweizen Weizen und Gerste Ohren, mit natürlichen Farben (RGB) digitale Fotografien in natürlichem Sonnenlicht unter Feldbedingungen. Mit minimalen Anpassungen für Kamera-Parameter und Umgebungsbedingungen Einschränkungen bietet die Technik präzise und konsistente Ergebnisse in verschiedenen Entwicklungsstadien.
Ohr Dichte oder die Anzahl der Ohren pro Quadratmeter (Ohren/m2), ist ein wichtiger Schwerpunkt in vielen Getreide Zuchtprogramme, wie Weizen und Gerste, eine wichtige agronomische Ausbeute Komponente für die Schätzung der Kornertrag darstellen. Daher eine schnelle, effiziente und standardisierte Technik zur Beurteilung Ohr Dichte würde helfen bei der Verbesserung der Landbewirtschaftung, Verbesserungen in preharvest Ertrag Vorhersagen oder sogar genutzt werden als Werkzeug für die um Ernte zu Zucht, wenn es definiert wurde als Merkmal von Bedeutung. Nicht nur sind die aktuellen Techniken für manuelle Ohr Dichte Bewertungen mühsam und zeitaufwändig, sondern sie sind auch ohne irgendwelche offiziellen standardisierten Protokoll per Laufmeter, Bereich Quadranten, oder eine Hochrechnung basierend auf Ohr Pflanzendichte und Pflanze postharvest zählt. Eine automatische Ohr zählen Algorithmus wird im Detail vorgestellt, Ohr Dichte mit nur Sonnenlicht Beleuchtung unter Feldbedingungen Schätzung basierend auf zenitalen (Nadir) natürliche Farbe (rot, grün und blau [RGB]) digitale Bilder, so dass für Hochdurchsatz- Standardisierte Messungen. Verschiedenen Feldversuchen Durum-Weizen und Gerste, die geografisch verteilt in ganz Spanien während der 2014/2015 bis 2015/2016 Ernte Jahreszeiten in bewässert und Rainfed Studien wurden verwendet, um repräsentative Ergebnisse zu liefern. Das drei-Phasen-Protokoll umfasst Ernte Wachstumsphase und Feld Zustand Planung, Image Capture Leitlinien, und einen Computer-Algorithmus aus drei Schritten: (i) ein Laplace Frequenzfilter, nieder- und hochfrequente Artefakte, (Ii) ein Medianfilter zum Abbau hoher entfernen Lärm, und (Iii) Segmentierung und zählen mit lokaler Maxima Gipfel für die endgültige Anzahl. Kleinere Anpassungen an den Algorithmus-Code müssen entsprechend der Kameraauflösung, Brennweite und Abstand zwischen der Kamera und die Ernte Baldachin erfolgen. Die Ergebnisse zeigen eine hohe Erfolgsquote (mehr als 90 %) und R–2 -Werte (von 0,62-0,75) zwischen der Algorithmus zählt und das manuelle Image-basierte Ohr zählt für Durum-Weizen und Gerste.
Die Welt-Getreide-Auslastung in 2017/2018 wird berichtet, um 1 % gegenüber dem Vorjahr1erweitern. Basierend auf die neuesten Vorhersagen für Getreide Produktion und Bevölkerung Auslastung, Welt-Getreide Bestände Erträge mit einer schnelleren Rate zu erhöhen, um die wachsenden Anforderungen, auch zur Steigerung der Wirkung von Climate Change2anzupassen müssen. Daher ist ein wichtiger Schwerpunkt auf Verbesserung der Ausbeute Getreide durch verbesserte Ernte Zuchttechniken. Zwei der wichtigsten und geernteten Getreide im Mittelmeerraum werden nämlich als Beispiele für diese Studie ausgewählt, Hartweizen (Triticum Aestivum L. SSP. Durum [Desf.]) und Gerste (Hordeum Vulgare L.(). Hartweizen ist, durch Verlängerung, die am häufigsten angebaute Getreide in den Süden und Osten Rändern des Mittelmeerraums und ist die 10. wichtigsten Ernte weltweit, aufgrund seiner Jahresproduktion von 37 Millionen Tonnen jährlich3, während Gerste die vierte global ist in Bezug auf Produktion, eine Gesamtproduktion von 144,6 Millionen Tonnen Getreide pro Jahr4.
Fernerkundung und proximalen Bild-Analyse-Techniken sind zunehmend wichtige Werkzeuge in der Weiterentwicklung der Bereich Hochdurchsatz-Pflanze Phänotypisierung (HTPP) wie sie nicht nur agiler bieten, aber auch oft, präzise und konsistente Abrufe des Ziels zuschneiden Biophysiological Merkmale, wie Bewertungen von photosynthetische Aktivität und Biomasse, preharvest Ausbeute Schätzungen und auch Verbesserungen im Merkmal Erblichkeit, wie Energieeffizienz in Ressource Verwendung und Aufnahme5,6,7 ,8,9. Fernerkundung konzentriert sich traditionell auf die multispektralen hyperspektralen und Wärmebildkamera-Sensoren von Arbeitsbühnen für Präzisionslandwirtschaft in das Feld Maßstab oder Pflanze Phänotypisierung Studium an der Microplot 10, Robbe. Gemeinsame, im Handel erhältlichen Digitalkameras, die nur sichtbares reflektiertes Licht zu messen waren oft übersehen wird, trotz ihrer sehr hohen räumlichen Auflösung, aber haben vor kurzem populär geworden, da immer neue innovative Bildverarbeitungs-Algorithmen können Nutzen Sie die detaillierte Farbe und räumliche Informationen, den sie anbieten. Viele der neuesten Innovationen in fortschrittlichen landwirtschaftlichen Bild Analysen setzen zunehmend auf die Interpretation der Angaben sehr hochauflösende (VHR) RGB-Bilder (für die Messung von rot, grün und blau sichtbar Lichtreflexion), einschließlich der Ernte Überwachung (Kraft, Phänologie, Krankheit Bewertungen und Identifizierung), Segmentierung und Quantifizierung (Entstehung, Ohr Dichte, Blüte und Frucht zählt) und sogar 3D Rekonstruktionen anhand einer neuen Struktur von Bewegung Workflows11.
Einer der wesentlichsten Punkte für Getreide Produktivitätssteigerung ist eine effizientere Bewertung der Rendite, bestimmt durch drei Hauptkomponenten: Ohr, Dichte oder die Anzahl der Ohren pro Quadratmeter (Ohren/m2), die Anzahl der Körner pro Ohr, und die tausend-Kernel-Gewicht. Ohr Dichte erhalten Sie manuell im Feld, aber diese Methode ist umständlich, zeitraubend und fehlt in ein einziges standardisiertes Protokoll, die zusammen in eine bedeutende Quelle des Fehlers führen kann. Einbeziehung der automatische Zählung der Ohren ist eine anspruchsvolle Aufgabe aufgrund der komplexen Ernte Struktur, enge Anlage, Abstand, hohe Ausmaß der Überlappung, Elemente im Hintergrund und das Vorhandensein von Grannen. Neuere Arbeiten fortgeschritten in dieser Richtung mit einer schwarzen Hintergrund Struktur unterstützt durch ein Stativ um Bilder geeignet beschneiden, zeigen recht gute Ergebnisse im Ohr zählen12zu erwerben. Auf diese Weise übermäßiges Sonnenlicht und Schatteneffekte vermieden, aber eine solche Struktur wäre umständlich und eine erhebliche Einschränkung in einer Anwendung auf Freilandbedingungen. Ein weiteres Beispiel ist, dass eine automatische Ohr zählen Algorithmus entwickelt, mit einem vollautomatischen Phänotypisierung System mit einer starren motorisierte Gantry mit guter Genauigkeit verwendet wurde, für die Zählung Ohr Dichte in einem Panel, bestehend aus fünf granneloser Brotweizen (Triticum Aestivum L.) Sorten, die unter verschiedenen Stickstoff Bedingungen13wachsen. Jüngsten Arbeiten von Fernandez Gallego14 optimiert diesen Prozess für schnellere und einfachere Datenerfassung mit VHR RGB-Farbbilder, gefolgt von weiter fortgeschritten, aber noch voll automatisierte, Bild-Analysen. Die effiziente und qualitativ hochwertige Datenerfassung unter Feldbedingungen betont ein vereinfachte, standardisiertes Protokoll für Konsistenz und hohe Aufnahme Datendurchsatz, während die Bildverarbeitungs-Algorithmus den Roman beschäftigt der Laplace-Operator und Frequenzbereich verwenden Filter, um unerwünschte Image-Komponenten zu entfernen, vor dem Auftragen einer Segmentierung für die Zählung basiert auf der Suche nach lokalen Maxima (im Gegensatz zur vollständigen Darstellung wie in anderen früheren Studien, die zu mehr Fehlern mit überlappenden Ohren führen kann).
Diese Arbeit schlägt vor, ein einfaches System für die automatische Quantifizierung von Ohr Dichte unter Feldbedingungen, mit Bildern von handelsüblichen Digitalkameras erworben. Dieses System nutzt die Vorteile des natürlichen Lichts im Feld Bedingungen und deshalb erfordert die Berücksichtigung von einigen Verwandten Umweltfaktoren, wie Zeit des Tages und Cloud Cover, bleibt aber in der Tat einfach zu implementieren. Das System ist demonstriert worden, auf Beispiele für Durum-Weizen und Gerste sollte jedoch erweiterbar in Anwendung auf Weizen, Brot, die neben der ausstellenden Ohren mit ähnlichen Morphologie, häufig granneloser sind, aber weitere Experimente wären erforderlich, um bestätigen Sie dies. In den Daten erfassen hier vorgestellten Protokoll, zenitalen Aufnahmen durch einfaches halten Sie die Kamera von hand oder mit einem Einbeinstativ für die Positionierung der Digitalkameras über die Ernte. Validierungsdaten können durch zählen der Ohren für Nebenhandlungen im Feld oder während der Nachbearbeitung, manuell durch zählen Ohren in das Bild selbst erworben werden. Die Bildverarbeitungs-Algorithmus besteht aus drei Prozesse, die Erstens effektiv unerwünschte Bestandteile des Bildes zu entfernen, die dann für die nachfolgenden Segmentierung und Auszählung der einzelnen Ähren in den erworbenen Bildern ermöglicht. Zunächst ein Frequenzfilter Laplace-Operator wird verwendet, um Änderungen in den verschiedenen Raumrichtungen das Bild mit den Standardeinstellungen ImageJ Filter ohne Fenster Kernel Größe Anpassungen zu erkennen (Finden Maxima Segmentierung Technik bestimmt die lokale Spitzen nach dem räumlichen Medianfilter Schritt, in welchem Stadium die Pixel im Zusammenhang mit Ohren haben höhere Pixelwerte als Boden- oder Blätter. Daher finden Maxima wird verwendet, um die hohen Werte im Bild segmentieren und diese Regionen sind beschriftet als Ohren, die Ohren und gleichzeitig reduzieren sich überschneidende Ohr Fehler identifiziert. Analysieren Sie Partikel wird dann auf die binäre Bilder zu zählen/messen Parameter aus den Regionen, die durch den Kontrast zwischen der weißen und schwarzen Oberfläche finden Maxima Schritt erstellten erstellt oder verwendet. Das Ergebnis wird dann verarbeitet, um ein binäres Bild Segmentierung zu erstellen, durch die Analyse der nächste Nachbar Pixel Varianz um jedes lokales Maximum, die Weizen-Ohr-Formen im gefilterten Bild zu identifizieren. Schließlich zählt die Ohr-Dichte analysieren Partikel mit, wie in Fidschi15umgesetzt. Maxima finden und analysieren Partikel sind eigenständige Funktionen und Plugins in Fidschi (https://imagej.nih.gov/ij/plugins/index.html) erhältlich. Wenn nicht ausdrücklich in das Protokoll hier vorgestellt, deuten vorläufige Ergebnisse als ergänzendes Material, dass diese Technik an Ohr zählen Untersuchungen von unbemannten Luftfahrzeugen (UAV), vorausgesetzt, dass die Auflösung angepasst werden kann bleibt ausreichend hohe14.
Erhöhte Beweglichkeit, Konsistenz und Präzision sind der Schlüssel zur Entwicklung von neuen Phänotypisierung Werkzeuge unterstützen die Pflanzenzüchtung Gemeinschaft in ihren Bemühungen um Kornertrag trotz des negativen Drucks, die Bezug auf den globalen Klimawandel zu erhöhen. Effiziente und genaue Einschätzungen der Getreide Ohr Dichte, hilft wie ein agronomischen Hauptbestandteil der Ausbeute an wichtiges Grundnahrungsmittel ernten, die Werkzeuge für die Fütterung von künftiger Generations zur Verfügung …
The authors have nothing to disclose.
Die Autoren dieser Forschung möchte das Feld Management Personal an Experimentierstationen Colmenar de Oreja (Aranjuez) des Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) und Zamadueñas (Valladolid) von der Instituto de Tecnología Agraria de verwendet Castilla y León (ITACyL) für ihre Feld-Unterstützung der Forschung Studie ernten. Diese Studie wurde unterstützt durch das Forschungsprojekt AGL2016-76527-R von MINECO und Spanien Teil ein Kooperationsprojekt mit Syngenta, Spanien. Die BPIN 2013000100103 Stipendium der “Formación de Talento Humano de Alto Nivel, Gobernación del Tolima – Universidad del Tolima, Kolumbien” war der einzige finanzielle Unterstützung für den ersten Autor Jose Armando Fernandez-Gallego. Die primäre Finanzierungsquelle des entsprechenden Autors, Shawn C. Kefauver, kam aus dem ICREA Wissenschaft Programm durch einen Zuschuss an Prof. Jose Luis Araus vergeben.
ILCE-QX1 Camera | Sony | WW024382 | Compact large sensor digital camera with 23.2 x 15.4 mm sensor size. |
E-M10 Camera | Olympus | E-M10 | Compact large sensor digital camera with 17.3 x 13.0 mm sensor size. |
Multipod Monpod | Sony | VCT MP1 | "Phenopole" in the JoVE article |
Computer | Any PC/Mac/Linux | — | Data and image analysis |
ImageJ/FIJI (FIJI is just Image J) | NIH | http://fiji.sc | Plug-in and algorithms for data and image analysis |
Circle/Metal Ring | Generic | Generic | Metal ring for in-field validation |
Crab Pliers Clip | Newer | 90087340 | Circle support and extension arm |