ICP0 subit une translocation nucléaire-à-cytoplasmique au cours de l’infection par HSV-1. On ne connaît pas le mécanisme moléculaire de cet événement. Nous décrivons ici l’utilisation du microscope confocal comme un outil permettant de quantifier le mouvement ICP0 dans l’infection HSV-1, qui jette les bases pour l’analyse quantitative ICP0 translocation dans de futures études mécanistes.
Cellule infectée protéine 0 (ICP0) de l’herpès simplex virus type 1 (HSV-1) est une protéine début immédiate contenant une anneau de type E3 ubiquitine ligase. Il est responsable de la dégradation de proteasome des facteurs restrictifs de l’hôte et l’activation des gènes viraux ultérieures. ICP0 contient une séquence de localisation nucléaire canonique (NLS). Il pénètre dans le noyau immédiatement après la synthèse de novo et exécute ses fonctions de défense de l’hôte contre principalement dans le noyau. Cependant, plus tard dans l’infection, ICP0 se trouve exclusivement dans le cytoplasme, ce qui suggère la présence d’une translocation nucléaire-à-cytoplasmique au cours de l’infection par HSV-1. Sans doute ICP0 translocation permet ICP0 de moduler ses fonctions selon ses emplacements sous-cellulaires lors des phases d’infection différents. Afin de délimiter la fonction biologique et le mécanisme de régulation de la translocation nucléaire-à-cytoplasmique ICP0, nous avons modifié une méthode de microscopie par immunofluorescence pour surveiller ICP0 traite au cours de l’infection par HSV-1. Ce protocole consiste immunofluorescence, microscope confocal imagerie nucléaire vs distribution cytoplasmique analyse et. Le but du présent protocole est d’adapter les images confocales état stationnaire, pris dans une évolution temporelle dans une documentation quantitative du mouvement ICP0 tout au long de l’infection lytique. Nous proposons que cette méthode peut être généralisée pour analyser quantitativement nucléaire vs localisation cytoplasmique d’autres protéines virales ou cellulaires sans faire appel à une technologie d’imagerie live.
L’herpès simplex virus type 1 (HSV-1) provoque un large éventail de légère à sévères maladies herpétiques, y compris l’herpès labial, l’herpès génital, kératite stromale et l’encéphalite. Une fois infecté, le virus crée une vie latente dans les neurones des ganglions. Parfois, le virus peut être réactivé par différentes raisons telles que la fièvre, le stress et immunodépression1, conduisant à l’infection par l’herpès récurrent. Protéine de la cellule infectée 0 (ICP0) est un important régulateur viral crucial pour les lytique et latente infection HSV-1. Il transactive virus en aval gènes via contrecarrer l’hôte des défenses antivirales intrinsèque/innée2,3. ICP0 a une activité de ligase E3 ubiquitine, qui s’adresse à plusieurs facteurs cellulaires pour la dégradation du protéasome dépendante3. Il interagit aussi avec les diverses voies de cellule de réglementer leurs activités et par la suite pour compenser l’hôte antiviral restrictions3. ICP0 est connu pour localiser à différents compartiments subcellulaires à mesure que l’infection progresse3,4,5. La protéine a un signal de localisation nucléaire riche en lysine/arginine (NLS) situé à résidus 500 à 5066. Lors de la synthèse de novo au début infection HSV-1, ICP0 est immédiatement importées dans le noyau. Il est tout d’abord détecté à une dynamique nucléaire structure appelé domaine nucléaire 10 (ND10)7. L’activité de ligase E3 ubiquitine de ICP0 déclenche la dégradation des protéines organisateur ND10, protéine (PML) la leucémie promyélocytaire et protéine moucheté 100 kDa (Sp100)8,9,10. Après la perte de protéines de l’organisateur, ND10 corps nucléaires sont dispersées et ICP0 est diffusée pour remplir le noyau entier4,11.
Fait intéressant, après le début de la réplication de l’ADN viral, ICP0 disparaît du noyau. On le trouve uniquement dans le cytoplasme, ce qui suggère la présence d’une translocation nucléaire-à-cytoplasmique fin de HSV-1 infection4,12. L’exigence de la réplication de l’ADN implique l’implication potentielle d’un fin ou des protéines virales dans la facilitation de la translocation cytoplasmique de HSV-1 ICP04,12. Apparemment ICP0 traite entre les différents compartiments au cours de l’infection confère le pouvoir ICP0 de moduler ses interactions à diverses voies cellulaires de façon spatio-temporelle et donc coordonner ses multiples fonctions à fine tune l’équilibre entre lytique et latente HSV-1 infection13. Pour mieux comprendre ICP0 multifonctionnalité et la coordination des domaines fonctionnels ICP0 tout au long de l’infection lytique, nous avons soigneusement disséqué la base moléculaire de la dynamique de la translocation de ICP012. Pour mener les études mécanistiques rapportées antérieurement12, nous avons appliqué une méthode de coloration par immunofluorescence pour visualiser la localisation sous-cellulaire ICP0 au statut de différentes infections sous microscope confocal. Nous avons également développé un protocole quantitatif pour analyser la nucléaire vs cytoplasmique distribution de ICP0 en utilisant le logiciel confocal. La population de cellules infectés par HSV-1 a été tabulée pendant les phases de l’infection et les tendances du mouvement ICP0 ont été analysés, sous différents traitements biochimiques12. Nous décrivons ici le protocole détaillé que la translocation de documents ICP0 dans l’infection par HSV-1. Nous proposons que cette méthode puisse être adoptée comme une méthode générale pour étudier la translocation nucléaire vs cytoplasmique d’autres protéines virales ou cellulaires, qui peut servir d’alternative aux direct imaging lorsque la technique d’imagerie live est inapplicable en raison de problèmes tels que l’étiquetage méthode, intensité du signal ou l’abondance de la protéine.
Ce protocole a été utilisé pour étudier la translocation nucléaire-à-cytoplasmique de HSV-1 ICP0. ICP0 subit le trafic sous-cellulaire au cours de l’infection par HSV-1 (Figure 1). Sans doute, ICP0 interagit avec différentes voies cellulaires à des fonctions différentes à différents endroits. Cette mesure ICP0 affiner ses multiples fonctions dans le bras de fer avec l’hôte humain13. Cependant, comment ICP0 coordonne les multiples fonctions d’une mani…
The authors have nothing to disclose.
Nous remercions financièrement par une subvention du NIH (RO1AI118992) attribuée à Gu Haidong. Nous remercions l’installation de microscopie, d’imagerie et cytométrie en ressources (MICR) Core à la Wayne State University pour le support technique.
Cells and viruses | |||
Human Embryonic Lung fibroblasts (HEL Cells) | Dr. Thomas E. Shenk (Princeton University) | HEL cells were grown in DMEM supplemented with 10% FBS | |
HSV-1 viral Stock (Strain F) | Dr. Bernard Roizman Lab | ||
Medium | |||
Dulbecco’s modified Eagle’s medium (DMEM) | Invitrogen | 11965-092 | |
Fetal Bovine Serum (FBS) | Sigma | F0926-500ml | |
Medium-199 (10X) | Gibco | 11825-015 | |
Reagents | |||
4- well 11 mm staggered slide | Cel-Line/Thermofisher Scientific | 30-149H-BLACK | |
16% Paraformaldehyde solution(w/v) Methanol free | Thermo Scientific | 28908 | |
Triton X-100 | Fisher reagents | BP151-1C0 | |
Bovine Serum Abumin (BSA) | Calbiochem | CAS 9048-46-8 | |
Horse Serum | Sigma | H1270 | |
Phosphate Buffered Saline (PBS) (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, pH7.4) | Dr. Haidong Gu lab | ||
NaCl | Fisher Bioreagent | BP358-212 | |
KH2PO4 | Fisher Bioreagent | BP362-500 | |
KCl | Fisher Scientific | BP366-500 | |
Na2HPO4 | Fisher Bioreagent | BP332-500 | |
Blocking buffer (PBS with 1% BSA and 5% Horse serum ) | Dr. Haidong Gu lab | ||
Rabiit Anti-ICP0 antibody | Dr. Haidong Gu lab | ||
PML (PG-M3)-Mouse monoclonal IgG | santa Cruz Biotechnology | SC-966 | |
Alexa Fluor 594-goat anti-rabbit IgG | invitrogen | A11012 | |
Alexa Fluor 488-goat anti-mouse IgG | invitrogen | A11001 | |
Vectashield Mouting medium with DAPI | Vector laboratories | H-1200 | |
Pasteur pipette | Fisher Brand | 13-678-20D | |
Nail Polish | Sally Hansen | ||
Equipment | |||
Confocal Microscope | Leica SP8 | ||
Confocal Software | Leica LAS X Application suite | ||
Excel software | Microsoft Excel | ||
HERAcell 150i CO2 incubator | Thermo Scientific | Order code 51026282 |