Summary

Use of Electron Paramagnetic Resonance in Biological Samples at Ambient Temperature and 77 K

Published: January 11, 2019
doi:

Summary

Electron paramagnetic resonance (EPR) spectroscopy is an unambiguous method to measure free radicals. The use of selective spin probes allows for detection of free radicals in different cellular compartments. We present a practical, efficient method to collect biological samples that facilitate treating, storing, and transferring samples for EPR measurements.

Abstract

The accurate and specific detection of reactive oxygen species (ROS) in different cellular and tissue compartments is essential to the study of redox-regulated signaling in biological settings. Electron paramagnetic resonance spectroscopy (EPR) is the only direct method to assess free radicals unambiguously. Its advantage is that it detects physiologic levels of specific species with a high specificity, but it does require specialized technology, careful sample preparation, and appropriate controls to ensure accurate interpretation of the data. Cyclic hydroxylamine spin probes react selectively with superoxide or other radicals to generate a nitroxide signal that can be quantified by EPR spectroscopy. Cell-permeable spin probes and spin probes designed to accumulate rapidly in the mitochondria allow for the determination of superoxide concentration in different cellular compartments.

In cultured cells, the use of cell permeable 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine (CMH) along with and without cell-impermeable superoxide dismutase (SOD) pretreatment, or use of cell-permeable PEG-SOD, allows for the differentiation of extracellular from cytosolic superoxide. The mitochondrial 1-hydroxy-4-[2-triphenylphosphonio)-acetamido]-2,2,6,6-tetramethyl-piperidine,1-hydroxy-2,2,6,6-tetramethyl-4-[2-(triphenylphosphonio)acetamido] piperidinium dichloride (mito-TEMPO-H) allows for measurement of mitochondrial ROS (predominantly superoxide).

Spin probes and EPR spectroscopy can also be applied to in vivo models. Superoxide can be detected in extracellular fluids such as blood and alveolar fluid, as well as tissues such as lung tissue. Several methods are presented to process and store tissue for EPR measurements and deliver intravenous 1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine (CPH) spin probe in vivo. While measurements can be performed at room temperature, samples obtained from in vitro and in vivo models can also be stored at -80 °C and analyzed by EPR at 77 K. The samples can be stored in specialized tubing stable at -80 °C and run at 77 K to enable a practical, efficient, and reproducible method that facilitates storing and transferring samples.

Introduction

While measures of oxidative stress and reactive oxygen species are important to the study of diverse diseases across all organ systems, the detection of reactive oxygen species (ROS) is challenging due to a short half-life and high reactivity. An electron paramagnetic resonance (EPR) technique is the most unambiguous method for detecting free radicals. Spin probes have advantages over the more commonly used fluorescent probes. Though fluorescent probes are relatively inexpensive and easy to use and provide rapid, sensitive detection of ROS, they do have serious limitations due to artifactual signals, an inability to calculate ROS concentrations, and a general lack of specificity1.

To facilitate the use of EPR for biological studies, a variety of spin probes have been synthesized that can measure a range of biologically relevant free radical species as well as pO2, pH, and redox states2,3,4,5,6,7. Spin traps have also been developed to capture short-lived radicals and form long-living adducts, which facilitates detection by EPR8. Both classes (spin probes and spin traps) have advantages and limitations. One commonly used class of spin probes are cyclic hydroxylamines, which are EPR-silent and react with short-lived radicals to form a stable nitroxide. Cyclic hydroxylamines react with superoxide 100 times faster than spin traps, enabling them to compete with cellular antioxidants, but they lack specificity and require the use of appropriate controls and inhibitors to identify the radical species or source responsible for the nitroxide signal. While spin traps exhibit specificity, with distinct spectral patterns depending on the trapped species, they have slow kinetics for superoxide spin trapping and are prone to biodegradation of the radical adducts. Applications for spin trapping have been well-documented in biomedical research9,10,11,12,13.

The goal of this project is to demonstrate practical EPR methods for designing experiments and preparing samples to detect superoxide using spin probes in different cellular compartments in vitro and in different tissue compartments in vivo. Several manuscripts have published protocols relevant to these goals, using cell-permeable, cell-impermeable, and mitochondrial targeted spin probes to target different cellular compartments in vitro and process tissue for analysis in mouse models14,15. We build upon this body of literature by validating an approach to measure superoxide using a 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine (CMH) spin probe in different cellular compartments in vitro to ensure accurate measurements, highlighting potential technical problems that may skew results. We also provide methods to perform EPR measurements in blood, bronchoalveolar lavage fluid, and lung tissue using the CMH spin probe. These studies compare different methods to process the tissues as well as present a method to inject another spin probe, CPH, into mice prior to harvesting tissue. Finally, we develop a practical method to store samples in polytetrafluoroethylene (PTFE) tubing to allow for the storage and transfer of samples before EPR measurements at 77 K.

Protocol

All animal studies were approved by the University of Colorado Denver Institutional Animal Care and Use Committee. 1. Preparation of Reagents Diethylenetriaminepentaacetic acid (DTPA) stock (150 mM) Add 2.95 g of DTPA (393.35 g/mol) to 10 mL of deionized water. To dissolve DTPA, add 1 M NaOH dropwise and bring to a pH of 7.0. Bring the volume to 50 mL with water for a final DTPA concentration of 150 mM, and store at 4 °C….

Representative Results

Superoxide detection using CMH was validated using the X/XO superoxide generating system to demonstrate that the nitroxide (CM.) signal was fully inhibited by SOD, while catalase had no effect (Figure 1A). The total, extracellular superoxide was then evaluated in RAW 264.7 cells by incubating cells with the cell-permeable CMH spin probe +/- SOD pretreatment. The nitroxide concentration was measured in both the cell suspension and buffer, which…

Discussion

The assessment of free radical production in biological settings is important in understanding redox regulated signaling in health and disease, but the measure of these species is highly challenging due to the short half-life of free radical species and technical limitations with commonly used methods. EPR is a valuable and powerful tool in redox biology, as it is the only unambiguous method for detecting free radicals. In this project, we demonstrate practical EPR methods for designing experiments and preparing samples …

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

This work was supported by the University of Colorado School of Medicine Dean's Strategic Research Infrastructure award, R01 HL086680-09 and 1R35HL139726-01, to E.N.G. and UCD CFReT fellowship award (HE). The authors thank Dr. Sandra Eaton and Dr. Gareth Eaton (University of Denver), Dr. Gerald Rosen and Dr. Joseph P. Kao (University of Maryland), and Dr. Sujatha Venkataraman (University of Colorado Denver) for helpful discussions, and Joanne Maltzahn, Ashley Trumpie and Ivy McDermott (University of Colorado Denver) for technical support.

Materials

DMEM LifeTech 10566-016 cell culture media
Diethylenetriaminepentaacetic acid (DTPA) Sigma Aldrich D6518-5G
sodium chloride (NaCl)  Fisher Scientific   BP358-212 used to prepare 50 mM phosphate saline buffer  according to Sigma aldrish  
potassium phosphate dibasic (HK2PO4 ) Fisher Scientific   BP363-500 used to prepare 50 mM phosphate saline buffer  according to Sigma aldrish  
potassium phosphate monobasic (KH2PO4 ) Sigma Aldrich P-5379 used to prepare 50 mM phosphate saline buffer  according to Sigma aldrish  
Krebs-Henseleit buffer (KHB)  (Alfa Aesar, Hill) J67820
Bovine erythrocyte superoxide dismutase (SOD) Sigma Aldrich  S7571-30KU
Phorbol 12-myristate 13-acetate (PMA)  Sigma Aldrich P1585-1MG Dissolve in DMSO
Antimycin A (AA) Sigma Aldrich A8674-25MG Dissolve in Ethanol and store in glass vials(MW used is the averaged molecular weights for four lots)
1-Hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine . HCl (CMH) Enzo Life Sciences ALX-430-117-M050
1-Hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine . HCl (CPH) Enzo Life Sciences ALX-430-078-M250
1-Hydroxy-4-[2-triphenylphosphonio)-acetamido]-2,2,6,6-tetramethylpiperidine, 1-Hydroxy-2,2,6,6-tetramethyl-4-[2-(triphenylphosphonio)acetamido]piperidinium dichloride ( mito-TEMPO-H) Enzo Life Sciences ALX-430-171-M005
1-Hydroxy-2,2,6,6-tetramethylpiperidin-4-yl-trimethylammonium chloride . HCl (CAT1H) Enzo Life Sciences ALX-430-131-M250
Heparin  Sagent Pharmaceuticals NDC 25021-400-10
Diphenyliodonium chloride  Sigma Aldrich 43088
Deferoxamin mesylate salt Sigma Aldrich D9533-1G
Critoseal Leica 39215003
BRAND disposable BLAUBRAND micropipettes, intraMark Sigma Aldrich 708733 Capillaries
PTFE FRACTIONAL FLUOROPOLYMER TUBING
3/16” OD x 1/8” ID
NORELL 1598774A Teflon tubing 
SILICONE RUBBER STOPPERS FOR NMR SAMPLE TUBES  FOR THIN WALL TUBES HAVING AN OD OF 4mm-5mm (3.2mm TO 4.2mm ID) TS-4-5-SR NORELL 94987
EMXnano Bench-Top EPR spectrometer  Bruker BioSpin GmbH E7004002
EMX NANO TISSUE CELL Bruker BioSpin GmbH E7004542

Riferimenti

  1. Kalyanaraman, B., et al. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radical Biology and Medicine. 52 (1), 1-6 (2012).
  2. Bobko, A. A., et al. In vivo monitoring of pH, redox status, and glutathione using L-band EPR for assessment of therapeutic effectiveness in solid tumors. Magnetic Resonance in Medicine. 67 (6), 1827-1836 (2012).
  3. Elajaili, H. B., et al. Electron spin relaxation times and rapid scan EPR imaging of pH-sensitive amino-substituted trityl radicals. Magnetic Resonance in Chemistry. 53 (4), 280-284 (2015).
  4. Elajaili, H., et al. Imaging disulfide dinitroxides at 250 MHz to monitor thiol redox status. Journal of Magnetic Resonance. 260, 77-82 (2015).
  5. Halpern, H. J., et al. Oxymetry Deep in Tissues with Low-Frequency Electron-Paramagnetic-Resonance. Proceedings of the National Academy of Sciences of the United States of America. 91 (26), 13047-13051 (1994).
  6. Epel, B., et al. Imaging thiol redox status in murine tumors in vivo with rapid-scan electron paramagnetic resonanc. Journal of Magnetic Resonance. 276, 31-36 (2017).
  7. Legenzov, E. A., Sims, S. J., Dirda, N. D. A., Rosen, G. M., Kao, J. P. Y. Disulfide-Linked Dinitroxides for Monitoring Cellular Thiol Redox Status through Electron Paramagnetic Resonance Spectroscopy. Biochimica. 54 (47), 6973-6982 (2015).
  8. Abbas, K., et al. Medium-throughput ESR detection of superoxide production in undetached adherent cells using cyclic nitrone spin traps. Free Radical Research. 49 (9), 1122-1128 (2015).
  9. Dikalov, S. I., et al. Distinct roles of Nox1 and Nox4 in basal and angiotensin II-stimulated superoxide and hydrogen peroxide production. Free Radical Biology and Medicine. 45 (9), 1340-1351 (2008).
  10. Dikalov, S. I., Kirilyuk, I. A., Voinov, M., Grigor’ev, I. A. EPR detection of cellular and mitochondrial superoxide using cyclic hydroxylamines. Free Radical Research. 45 (4), 417-430 (2011).
  11. Dikalova, A. E., et al. Therapeutic Targeting of Mitochondrial Superoxide in Hypertension. Circulation Research. 107 (1), 106-116 (2010).
  12. Dikalov, S. I., Polienko, Y. F., Kirilyuk, I. Electron Paramagnetic Resonance Measurements of Reactive Oxygen Species by Cyclic Hydroxylamine Spin Probes. Antioxidants & Redox Signaling. , (2017).
  13. Sharma, S., et al. L-Carnitine preserves endothelial function in a lamb model of increased pulmonary blood flow. Pediatric Research. 74 (1), 39-47 (2013).
  14. Berg, K., Ericsson, M., Lindgren, M., Gustafsson, H. A High Precision Method for Quantitative Measurements of Reactive Oxygen Species in Frozen Biopsies. PloS One. 9 (3), (2014).
  15. Kozlov, A. V., et al. EPR analysis reveals three tissues responding to endotoxin by increased formation of reactive oxygen and nitrogen species. Free Radical Biology and Medicine. 34 (12), 1555-1562 (2003).
  16. Van Rheen, Z., et al. Lung Extracellular Superoxide Dismutase Overexpression Lessens Bleomycin-Induced Pulmonary Hypertension and Vascular Remodeling. American Journal of Respiratory Cell and Molecular Biology. 44 (4), 500-508 (2011).
  17. Mouradian, G. C., et al. Superoxide Dismutase 3 R213G Single-Nucleotide Polymorphism Blocks Murine Bleomycin-Induced Fibrosis and Promotes Resolution of Inflammation. American Journal of Respiratory Cell and Molecular Biology. 56 (3), 362-371 (2017).
  18. Dikalov, S. I., Li, W., Mehranpour, P., Wang, S. S., Zafari, A. M. Production of extracellular superoxide by human lymphoblast cell lines: comparison of electron spin resonance techniques and cytochrome C reduction assay. Biochem Pharmacol. 73 (7), 972-980 (2007).
  19. Kozuleva, M., et al. Quantification of superoxide radical production in thylakoid membrane using cyclic hydroxylamines. Free Radical Biology and Medicine. 89, 1014-1023 (2015).
  20. Chen, K., Swartz, H. M. Oxidation of Hydroxylamines to Nitroxide Spin Labels in Living Cells. Biochimica Et Biophysica Acta. 970 (3), 270-277 (1988).

Play Video

Citazione di questo articolo
Elajaili, H. B., Hernandez-Lagunas, L., Ranguelova, K., Dikalov, S., Nozik-Grayck, E. Use of Electron Paramagnetic Resonance in Biological Samples at Ambient Temperature and 77 K. J. Vis. Exp. (143), e58461, doi:10.3791/58461 (2019).

View Video