Summary

功能表面用印迹纳米纤维聚合的多尺度结构

Published: September 11, 2018
doi:

Summary

本文介绍了一种利用阳极氧化铝过滤器制备纳米微尺度结构的简易方法–功能表面。

Abstract

多尺度表面结构引起了越来越多的兴趣, 因为一些潜在的应用在表面设备。然而, 目前在这一领域存在的一个挑战是采用轻便、经济高效和高通量的方法制造混合微纳米结构。为了克服这些挑战, 本文提出了一种用阳极氧化铝 (氧化铝) 过滤器和纳米纤维的蒸发自聚过程来制造多尺度结构的协议。不像以前试图理顺纳米纤维的尝试, 我们展示了一种独特的制造方法, 多尺度聚合纳米纤维的高纵横比。此外, 研究了这些结构在各种液体中的表面形貌和润湿性, 以利于它们在多功能表面的应用。

Introduction

纳米颗粒、纳米管和纳米纤维等纳米结构已引起科学界的关注, 因为它们在各种应用中表现出独特的特性, 包括电子、生物医学、光学和表面工程1,2,3,4,5,6,7,8。特别是, 纳米纤维广泛应用于可伸缩和透明电极9, 耐磨传感器10,11, 互连12,13, 和纳米光学应用14. 在制造纳米结构的各种方法中, 如溶胶-凝胶方法、自组装、光刻和复制15161718, 1920, 使用模板进行直接复制目前被认为是一种有希望的方法, 因为它简单、经济高效, 适用于各种可固化材料2122,23,24,25,26

由于其多尺度结构具有大量的纳米孔隙和微尺度高度, 因此, 氧化铝被广泛用作制备纳米纤维和纳米管的模板, 具有高长宽比272829,30. 然而, 由于表面张力在如此高的纵横比, 纤维容易地聚集31,32,33。现有的研究已经证明, 长宽比大于15:1 的纳米纤维不直立, 而是聚合, 而比不到5:1 的人则单独隔离, 没有聚集33,34。毛细管力和表面张力对氧化铝的去除起着重要的作用, 蚀刻是碳纤维制造过程中的工艺之一。当长宽比增加时, 纤维间的表面张力会使它们相互靠近, 导致聚集。一些研究集中在防止这种聚合的方法35, 这在聚合物和金属纳米纤维中特别被观察到。其中, 碳纤维表面的水化可以减少团聚, 因为当液体占据纳米纤维之间的空隙时, 表面张力就会减小。此外, 冻干法还可以降低纤维间的表面张力, 从而减少聚集。然而, 尽管作出了各种努力, 高纵横比的纳米纤维的矫直仍然是一个挑战。

为此, 我们报告了一种独特的方法来制造复杂的碳纤维的多尺度结构, 利用聚集现象的积极方式。在这里, 碳纤维结构是用氧化铝过滤器和聚氨酯丙烯酸酯 (PUA) 型树脂, 粘度为 257.4 cP。在 uv 纳米压印 (uv-零) 进行后, 模具用氢氧化钠溶液蚀刻。为了表征所提出的多尺度结构, 我们研究了聚合纳米纤维样品的模式行为和表面润湿性, 如自组装单层涂层和紫外线臭氧处理等表面处理。.此外, 我们建议, 多孔表面可以简单地转化为一个光滑的表面使用润滑剂注入过程。

Protocol

1. 利用氧化铝过滤器制备纳米微尺度结构表面 (图 1) 购买一个氧化铝过滤器的孔径大小, 高度, 直径为200毫微米, 60 µm, 和25毫米, 分别。 1.2. 清洗具有100微米厚度的聚对苯二甲酸乙二醇酯 (PET) 膜的表面, 使用丙酮与99.8% 和异丙醇 (IPA) 99.9% 为5分钟, 并使用气枪完全干燥3分钟。 将 PET 薄膜放置在无污染物的平坦表面上, 并添加0.1 毫升的 UV 固化聚氨酯丙烯酸?…

Representative Results

用氧化铝过滤器作为印迹模, 演示了一种快速、简便的制备多尺度纳米微混合结构的方法。整个过程花费了30分钟 (图 4)。据指出, 在使用氢氧化钠进行蚀刻过程后, 由于表面张力引起的聚集碳纤维装配, 结果表面呈现出与原氧化铝过滤器相似的不透明颜色。进一步, EDX 分析的结果证实了氧化铝过滤器被湿化学蚀刻完全去除 (图 3)?…

Discussion

制备自聚集碳纤维总成的关键步骤是确保在胶辊上应用树脂时, 脆性氧化铝过滤器不会断裂。事实上, 应该确保氧化铝过滤器在蚀刻步骤之前的任何一点都不会断裂。由于氧化铝过滤器直径为25毫米, 基体的尺寸约为 30 x 30 毫米。

自聚集碳纤维组件允许我们通过适当的表面处理提供各种功能表面。在印迹后, 原表面是亲水性的, 但经涂膜后, 受紫外线臭氧处理和表面能量的变化, ?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这一材料的基础是通过由科学、信息和通信技术和未来规划部 (NRF-2017R1A2B4008053) 和贸易、工业和能源部 (NRF) 资助的韩国国家研究基金会为基础科学研究项目提供支助的工作 (MOTIE, 韩国) 根据工业技术创新计划10052802号和韩国技术进步研究所 (永吉), 通过鼓励方案为工业的经济合作区 (N0002310)。

Materials

MINS 511RM Minuta Tech UV curable resin
Octadecyltrichlorosilane (OTS) Aldrich Surface treatment
Sodium oxidanide SAMCHUN Etching solution
Anopore Inoganic Membranes Whatman 25mm/0.2µm
MT-UV-A 47 Meiji Techno UV curing equipment
UVC-30 Jaesung Engineering UVO treatment equipment
Smart Drop Plus FEMTOFAB Contact angle measurement
Fluorinert FC-70 3M liquid mixture of completely fluorinated aliphatic compounds
Polyethylene terephthalate film Sunchem Substrate
Acetone (99.8%) Daejung Cleaning solution
Isopropyl alcohol (99.9%) Daejung Cleaning solution
Rubber roller Hwahong For application of resin
Corning Stirring Hot Plates Corning Hot plate equipment (5" x 7")

Riferimenti

  1. Elghanian, R., Storhoff, J. J., Mucic, R. C., Letsinger, R. L., Mirkin, C. A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science. 277, 1078-1081 (1997).
  2. Berdichevsky, Y., Lo, Y. H. Polypyrrole nanowire actuators. Advanced Materials. 18, 122-125 (2006).
  3. Mitchell, D. T., et al. Smart nanotubes for bioseparations and biocatalysis. Journal of the American Chemical Society. 124, 11864-11865 (2002).
  4. Nicewarner-Pena, S. R., et al. Submicrometer metallic barcodes. Science. 294, 137-141 (2001).
  5. Dersch, R., Steinhart, M., Boudriot, U., Greiner, A., Wendorff, J. H. Nanoprocessing of polymers: applications in medicine, sensors, catalysis, photonics. Polymers for Advanced Technologies. 16, 276-282 (2005).
  6. Baker, L. A., Jin, P., Martin, C. R. Biomaterials and biotechnologies based on nanotube membranes. Critical reviews in solid state and materials sciences. 30, 183-205 (2005).
  7. Xiang, H., et al. Block copolymers under cylindrical confinement. Macromolecules. 37, 5660-5664 (2004).
  8. Fei, G., et al. Electro-activated surface micropattern tuning for microinjection molded electrically conductive shape memory polyurethane composites. RSC Advances. 3, 24132-24139 (2013).
  9. Kim, K., et al. Stretchable and transparent electrodes based on in-plane structures. Nanoscale. 7, 14577-14594 (2015).
  10. Kim, J., et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nature Communications. 8, 14997 (2017).
  11. Park, J., et al. Wearable, wireless gas sensors using highly stretchable and transparent structures of nanowires and graphene. Nanoscale. 8, 10591-10597 (2016).
  12. An, B. W., et al. High-resolution printing of 3D structures using an electrohydrodynamic inkjet with multiple functional inks. Advanced Materials. 27, 4322-4328 (2015).
  13. Kim, M., et al. Fully-integrated, bezel-less transistor arrays using reversibly foldable interconnects and stretchable origami substrates. Nanoscale. 8, 9504-9510 (2016).
  14. Zhao, Y. S., Zhan, P., Kim, J., Sun, C., Huang, J. Patterned growth of vertically aligned organic nanowire waveguide arrays. American Chemical Society Nano. 4, 1630-1636 (2010).
  15. Kuo, C. W., Shiu, J. Y., Chen, P. Size-and shape-controlled fabrication of large-area periodic nanopillar arrays. Chemistry of Materials. 15, 2917-2920 (2003).
  16. Lee, S. B., Koepsel, R., Stolz, D. B., Warriner, H. E., Russell, A. J. Self-assembly of biocidal nanotubes from a single-chain diacetylene amine salt. Journal of the American Chemical Society. 126, 13400-13405 (2004).
  17. Gibson, J. M. Reading and writing with electron beams. Physics Today. 50, 56-61 (1997).
  18. Kramer, N., Birk, H., Jorritsma, J., Schönenberger, C. Fabrication of metallic nanowires with a scanning tunneling microscope. Applied Physics Letters. 66, 1325-1327 (1995).
  19. Jiang, P., Bertone, J. F., Colvin, V. L. A lost-wax approach to monodisperse colloids and their crystals. Science. 291, 453-457 (2001).
  20. Steinhart, M., et al. Polymer nanotubes by wetting of ordered porous templates. Science. 296, 1997 (2002).
  21. Hong, S. H., Hwang, J., Lee, H. Replication of cicada wing’s nano-patterns by hot embossing and UV nanoimprinting. Nanotechnology. 20, 385303 (2009).
  22. Han, K. S., Shin, J. H., Yoon, W. Y., Lee, H. Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography. Solar Energy Materials and Solar Cells. 95, 288-291 (2011).
  23. Choo, S., Choi, H. J., Lee, H. Replication of rose-petal surface structure using UV-nanoimprint lithography. Materials Letters. 121, 170-173 (2014).
  24. Yu, Z., Chou, S. Y. Triangular profile imprint molds in nanograting fabrication. Nano Letters. 4, 341-344 (2004).
  25. Hirai, Y., Harara, S., Isaka, S., Kobayashi, M., Tanaka, Y. Nano-Imprint lithography using replicated mold by Ni electroforming. Japanese Journal of Applied Physics. 41, 4186 (2002).
  26. Kim, J. H., Cho, Y. T., Jung, Y. G. Selection of absorptive materials for non-reflective wire grid polarizers. International Journal of Precision Engineering and Manufacturing. 17, 903-908 (2016).
  27. St˛epniowski, W. J., Salerno, M. Fabrication of nanowires and nanotubes by anodic alumina template-assisted electrodeposition. Manufacturing Nanostructures. 12, 321-357 (2014).
  28. Sousa, C. T., et al. Nanoporous alumina as templates for multifunctional applications. Applied Physics Reviews. 1, 031102 (2014).
  29. Hong, S. H., Bae, B. J., Lee, H., Jeong, J. H. Fabrication of high density nano-pillar type phase change memory devices using flexible AAO shaped template. Microelectronic Engineering. 87, 2081-2084 (2010).
  30. Schwirn, K., et al. Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization. American Chemical Society Nano. 2, 302-310 (2008).
  31. Lee, P. S., et al. Vertically aligned nanopillar arrays with hard skins using anodic aluminum oxide for nano imprint lithography. Chemistry of Materials. 17, 6181-6185 (2005).
  32. Lopes, M. C., de Oliveira, C. P., Pereira, E. C. Computational modeling of the template-assisted deposition of nanowires. Electrochimica Acta. 53, 4359-4369 (2008).
  33. Choi, M. K., Yoon, H., Lee, K., Shin, K. Simple fabrication of asymmetric high-aspect-ratio polymer nanopillars by reusable AAO templates. Langmuir. 27, 2132-2137 (2011).
  34. Kim, Y. S., Lee, K., Lee, J. S., Jung, G. Y., Kim, W. B. Nanoimprint lithography patterns with a vertically aligned nanoscale tubular carbon structure. Nanotechnology. 19, 365305 (2008).
  35. Chen, G., Soper, S. A., McCarley, R. L. Free-standing, erect ultrahigh-aspect-ratio polymer nanopillar and nanotube ensembles. Langmuir. 23, 11777-11781 (2007).
  36. Jeong, Y., et al. Fabrication of Nano-Micro Hybrid Structures by Replication and Surface Treatment of Nanowires. Crystals. , (2017).

Play Video

Citazione di questo articolo
Jeong, Y., Kim, S., Fang, N. X., Shin, S., Choi, H., Kim, S., Kwon, S., Cho, Y. T. Multiscale Structures Aggregated by Imprinted Nanofibers for Functional Surfaces. J. Vis. Exp. (139), e58356, doi:10.3791/58356 (2018).

View Video