We describe three experimental methods for evaluating the hypopigmentation activity of chemicals in vitro: quantification of 1) cellular tyrosinase activity and 2) melanin content, and 3) measurement of melanin by cellular melanin staining and image analysis.
This study presents laboratory methods for the quantification of hypopigmentation activity in vitro. Melanin, the major pigment in melanocytes, is synthesized in response to multiple cellular and environmental factors. Melanin protects skin cells from ultraviolet damage, but also has biophysical and biochemical functions. Excessive production or accumulation of melanin in melanocytes can cause dermatological problems, such as freckles, dark spots, melasma, and moles. Therefore, the control of melanogenesis with hypopigmentation agents is important in individuals with clinical or cosmetic needs. Melanin is primarily synthesized in the melanosomes of melanocytes in a complex biochemical process called melanogenesis, which is influenced by extrinsic and intrinsic factors, such as hormones, inflammation, age, and ultraviolet light exposure. We describe three methods to determine the hypopigmentation activity of chemicals or natural substances in melanocytes: measurement of the 1) cellular tyrosinase activity and 2) melanin content, and 3) staining and quantifying cellular melanin with image analysis.
In melanogenesis, tyrosinase catalyzes the rate-limiting step that converts L-tyrosine into 3,4-dihydroxyphenylalanine (L-DOPA) and then into dopaquinone. Therefore, the inhibition of tyrosinase is a primary hypopigmentation mechanism. In cultured melanocytes, tyrosinase activity can be quantified by adding L-DOPA as a substrate and measuring dopaquinone production by spectrophotometry. Melanogenesis can also be measured by quantifying the melanin content. The melanin-containing cellular fraction is extracted with NaOH and melanin is quantified spectrophotometrically. Finally, the melanin content can be quantified by image analysis following Fontana-Masson staining of melanin. Although the results of these in vitro assays may not always be reproduced in human skin, these methods are widely used in melanogenesis research, especially as the initial step to identify potential hypopigmentation activity. These methods can also be used to assess melanocyte activity, growth, and differentiation. Consistent results with the three different methods ensure the validity of the effects.
Melanin plays a critical role in the physiology, pathology, and toxicology of several organs including the skin, eyes, and brain1. Major functions of melanin are photo-screening and biochemical effects. Melanin absorbs near-infrared and visible light as well as ultraviolet (UV) radiation, with increased absorption rates at shorter wavelengths of light; thus, melanin protects tissues from damage caused by visible light or UV radiation2. Melanin is an antioxidant and has an affinity for metals and other toxic chemicals; therefore, it can protect tissues from oxidative and chemical stress3. However, the excessive production of melanin causes dermatological issues.
The quantity and quality of melanin in the skin and iris are the most important determinants of the color of the iris and skin. Individuals may have different skin color preferences; some favor tanned skin, while others favor lighter skin colors. Depending on these consumer profiles, hypopigmentation cosmetics have been developed to satisfy individual markets for favored skin colors4. Accordingly, studies of hypopigmentation and anti-melanogenic activity are important both scientifically and practically.
Melanogenesis is the complex process of melanin biosynthesis through a series of enzymatic and spontaneous chemical reactions in melanocytes. One melanocyte is surrounded by approximately 36 keratinocytes and melanocytes are the melanin synthesis factories that distribute their product to neighboring keratinocytes. In skin, the melanin produced and stored in the melanosomal compartment of melanocytes is transported to neighboring keratinocytes in the epidermis via dendrites.
L-Tyrosine serves as the initial substrate for melanogenesis and the enzyme tyrosinase catalyzes two consecutive reactions that convert L-tyrosine into 3,4-dihydroxyphenylalanine (DOPA) and then into dopaquinone. These reactions are the rate-limiting step in melanogenesis5,6. Accordingly, hypopigmentation activity can first be measured by assessing cellular tyrosinase activity directly. To do so, melanocyte extracts containing tyrosinase are incubated with DOPA and the dopaquinone produced in the samples can be measured by spectrophotometry at 475 nm. The values are normalized by the protein concentrations of the samples, and substances with hypopigmentation activity result in less dopaquinone formation compared with controls.
Secondly, hypopigmentation activity can be quantified by measuring melanin in cultured melanocytes directly. After treating cells with the test material, melanin is extracted under alkaline conditions and the melanin content is quantified by spectrophotometry at 400 nm. A hypopigmentation agent will result in a lower melanin content than the controls7.
Finally, the hypopigmentation activity can be quantified by Fontana-Masson melanin staining and subsequent image analysis. In Fontana-Masson staining, melanin granules reduce ammonia-silver nitrate to a visible black metallic state and the black areas of cells in microscopic images represent the amount of melanin.
A hypopigmentation agent usually gives consistent and comparable results with these three methods, which confirms that the activity of the substance is valid. Alternatively, it may be useful to measure the expression of key genes and proteins in melanogenesis in response to a test substance to examine hypopigmentation activity. In addition to tyrosinase, tyrosinase-related proteins (TRP-1) and dopachrome tautomerase (TRP-2) are critical enzymes in melanogenesis8. The transcription factor microphthalmia-associated transcription factor (MITF) is a master regulator in melanogenesis and quantification of its gene/protein expression levels or a promoter activity assay can also be used to assess hypopigmentation activity.
1. Preparation of Medium, Compounds, and Reagents
2. Cell Culture and Treatment
3. Measuring Cellular Tyrosinase Activity
4. Measuring Melanin Content
5. Fontana–Masson staining
Representative results for the hypopigmentation activity of arbutin, an anti-melanogenic compound, in B16F10 melanocytes are shown below. Figure 1A shows that arbutin significantly suppressed the cellular tyrosinase activity compared with the vehicle-treated control. Similarly, the melanin content of cells stimulated with arbutin was significantly reduced compared with the controls (Figure 1B). Microscopic images of cells stained with Fontana-Masson stain are shown in Figure 1C. Arbutin treatment decreased the area of black pigment compared with the control.
Figure 1: Arbutin suppressed melanogenesis in melanocytes. B16F10 cells were treated with arbutin (125 μg/mL) for 72 h. A. Cellular tyrosinase activity. B. Melanin content. C. Melanin was visualized with Fontana-Masson stain. Data are the means ± SEM (n = 4). Statistical comparisons were performed using Student's t-test (p values<0.05 were considered to be statistically significant). Please click here to view a larger version of this figure.
We presented protocols for evaluating the hypopigmentation activity of test compounds using cultured melanocytes. The representative results showed the hypopigmentation effect of arbutin, a tyrosinase inhibitor that inhibited tyrosinase activity and cellular melanin content. These methods are widely used in anti-melanogenic activity research. Using these assays, we have also successfully identified several bioactive compounds that have melanogenesis inhibitory effects on B16F10 cells in the past decade9,10,11,12,13,14.
Melanin is produced by melanosomes in various pigment cells, including melanocytes in skin. In this study, we used B16F10 melanoma cells that produce melanin, which causes the culture medium to become dark brown or black15. Primary melanocytes might be biologically important tools for studying in vivo effects, but due to their limited proliferative capacity and the variability in phenotypes generated, cultured melanocytes are considered a reliable in vitro model16. Melanogenesis of this cell line is comparable with those of primary melanocytes. This method better represents the cellular environment than the mushroom tyrosinase activity assay, in which the enzyme is directly incubated with the substrate and hypopigmentation test compound.
Before performing these experiments, it might be necessary to perform the 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay or comparable assays, such as the cell violet assay, with the test compound(s). If a test substance affects cell proliferation or exhibits cytotoxicity, then melanocyte growth could be affected, and the results might not correctly represent the cellular tyrosinase activity. Chemicals or natural substances often have some cytotoxicity at high concentrations and this is particularly important for substances with mild activity. It is also not uncommon for substances and natural extracts to promote cell proliferation and differentiation. Consequently, the potential for additional bioactivity causing cell growth should be examined, although these effects on cell growth could be adjusted by normalizing the activity with the protein concentration.
Various mechanisms could result in hypopigmentation independent of tyrosinase activity. Melanogenesis is a complex biosynthetic pathway that involves multiple signal transduction pathways and transcription factor activities17. Therefore, the expression of key genes and proteins and melanogenic signal transduction pathways could be examined for an in-depth study of hypopigmentation. MITF is an important transcription factor in melanogenesis and α-melanocyte-stimulating hormone (α-MSH) can stimulate melanogenic signal transduction pathways18,19. Depending on their known biological characteristics, related signal transduction pathways could be studied further.
When measuring melanin content, the obtained values should also be normalized by the protein concentration, so that the results correctly represent the melanin content per cell or per culture area20. Additionally, phenol-red-free medium is recommended in the compound treatment step to avoid the negative effects of phenol red on absorbance.
For melanin staining, we used the Fontana-Masson stain, which detects argentaffin substances, such as melanin and argentaffin cells21. This technique is also used for paraffin or frozen section samples following the deparaffinization step. The reagents used in this experiment are harmful; contact and inhalation should be avoided, and the reagents should be used only in a fume hood whenever possible. After staining, ImageJ is used to calculate the stained area. With Fontana-Masson staining, it can be difficult to interpret faint staining in sparsely positive cells; however, this may not be an issue for melanin-rich melanocytes. The silver nitrate, ammoniacal silver, sodium thiosulfate, and ammonium hydroxide used in the experiments should be handled with care due to their toxicity.
These are widely used are methods in the field of melanogenesis and hypopigmentation because they are rapid, handy, cost-effective, and reliable. These methods may be useful for investigators who want to identify novel compounds or extracts with anti-melanogenic or pro-melanogenic activities. They could also be used to assess melanocyte cell growth or cellular activity. One limitation is the reproducibility of the results on human skin, which is a complex organ in which homeostasis is maintained in response to various environmental, chemical, and biological factors. Therefore, hypopigmentation agents confirmed by these methods in vitro might not have significant effects on human skin in vivo.
In summary, these protocols are an important initial step in screening test compounds for their inhibitory effects on melanogenesis. We suggest that these methods can explain not only the inhibitory effects on melanogenesis but also the mechanism involved. After bioactive candidate compounds are identified, further testing may lead to studies of the biological mechanisms or commercial applications, followed by in vivo use.
The authors have nothing to disclose.
This work was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, and Forestry (IPET) through the Agri-Bioindustry Technology Development Program, funded by the Ministry of Agriculture, Food, and Rural Affairs (MAFRA) (116159-02-2-WT011) and School of Life Sciences and Biotechnology for BK21 PLUS, Korea University.
3,4-Dihydroxy-l-phenylalanine | Sigma | D9628 | |
Ammonium hydroxide solution | Sigma | #320145 | |
Arbutin | Fluka | #10960 | |
DMEM | HyClone | SH30243.01 | |
FBS | HyClone | SH30084.03 | |
Formalin | Yakuri Pure Chemicals | #16223 | 37% |
Gold chloride | American MasterTech | AHG0226 | 0.10% |
HCl | Samchun chemical | H0255 | |
KCl | Bio basic Canada Inc. | PB0440 | |
KH2PO4 | Sigma | #60218 | |
Na2HPO4 | J.T.Baker | #3817-01 | |
NaCl | Duksan pure chemicals | #81 | |
NaOH | Sigma | 655104 | |
Nuclear fast red | Merck | 100121 | Nuclear fast red 0.1% in 5% aluminum sulfate. |
Penicillin and streptomycin solution | HyClone | SV30010 | |
Silver nitrate | Duksan Pure Chemicals | #900 | |
Sodium phosphate dibasic (Na2HPO4) | J.T. Baker | #3817-01 | |
Sodium phosphate monobasic (Na2HPO4) | Sigma | S5011 | |
Sodium thiosulfate pentahydrate | Duksan Pure Chemicals | #2163 | |
Tris(hydroxymethyl)aminomethane | Bio Basic Canada | TB0196 | |
Triton X-100 | Union Carbide | T8787 | |
Tyrosinase from mushroom | Sigma | T3824 | 25 KU |