Here, we present a protocol to isolate and characterize the structure, olfactory potency, and behavioral response of putative pheromone compounds of sea lampreys.
Bioassay-guided fractionation is an iterative approach that uses the results of physiological and behavioral bioassays to guide the isolation and identification of an active pheromone compound. This method has resulted in the successful characterization of the chemical signals that function as pheromones in a wide range of animal species. Sea lampreys rely on olfaction to detect pheromones that mediate behavioral or physiological responses. We use this knowledge of fish biology to posit functions of putative pheromones and to guide the isolation and identification of active pheromone components. Chromatography is used to extract, concentrate, and separate compounds from the conditioned water. Electro-olfactogram (EOG) recordings are conducted to determine which fractions elicit olfactory responses. Two-choice maze behavioral assays are then used to determine if any of the odorous fractions are also behaviorally active and induce a preference. Spectrometric and spectroscopic methods provide the molecular weight and structural information to assist with the structure elucidation. The bioactivity of the pure compounds is confirmed with EOG and behavioral assays. The behavioral responses observed in the maze should ultimately be validated in a field setting to confirm their function in a natural stream setting. These bioassays play a dual role to 1) guide the fractionation process and 2) confirm and further define the bioactivity of isolated components. Here, we report the representative results of a sea lamprey pheromone identification that exemplify the utility of the bioassay-guided fractionation approach. The identification of sea lamprey pheromones is particularly important because a modulation of its pheromone communication system is among the options considered to control the invasive sea lamprey in the Laurentian Great Lakes. This method can be readily adapted to characterize the chemical communication in a broad array of taxa and shed light on waterborne chemical ecology.
Pheromones are specific chemical signals released by individuals that aid them in locating food sources, detecting predators, and mediating social interactions of conspecifics1. Pheromone communication in insects has been well studied2; however, the chemical identification and biological function of aquatic vertebrate pheromones have not been studied as extensively. Knowledge of the identity and function of the pheromones released can be applied to facilitate the recovery of threatened species3,4 or control pest species5,6. The application of these techniques necessitates the isolation and characterization of the bioactive pheromone components.
Pheromone identification is a branch of natural product chemistry. Progress in pheromone research has been partially limited due to the nature of the pheromone molecules themselves. Pheromones are often unstable and released in small quantities, and only a few sampling techniques exist to detect minute amounts of volatile7,8 or water-soluble compounds9. Approaches to identify pheromones include 1) a targeted screening of known compounds, 2) metabolomics, and 3) bioassay-guided fractionation. A targeted screening of known compounds tests commercially available metabolic by-products of physiological processes hypothesized to function as pheromones. This approach is limiting because researchers can only test known and available compounds. However, it has resulted in the successful identification of sex hormones in goldfish that function as pheromones10,11,12. Metabolomics is a second pheromone identification approach that distinguishes potential small molecule metabolic products within a biological system13. A comparison of the metabolic profiles of two groups (i.e., an active versus an inactive extract) enables the identification of a potential metabolic profile from which the metabolite is purified, the structure is elucidated, and the bioactivity is confirmed14. Additive or synergistic effects of complex formulations of specific mixtures are more likely to be detected with metabolomics because metabolites are considered together rather than as a series of fractions13. Yet, the implementation of metabolomics relies on the availability of synthetic references because the resulting data do not facilitate the elucidation of novel structures.
Bioassay-guided fractionation is an integrated, iterative approach that spans two fields: chemistry and biology. This approach uses the results of physiological and behavioral bioassays to guide the isolation and identification of an active pheromone compound. A crude extract is fractionated by a chemical property (i.e., molecular size, polarity, etc.) and tested with electro-olfactogram (EOG) recordings and/or in a bioassay. The bioactive components are screened out by repeating these steps of fractionation and EOGs and/or bioassays. The structures of pure active compounds are elucidated by spectrometric and spectroscopic methods, which provide the molecular weight and structural information to produce a template of the compound to be synthesized. Bioassay-guided fractionation can yield diverse metabolites and potentially novel pheromones with unique chemical skeletons that are unlikely to be predicted from the biosynthetic pathways.
Here, we describe the bioassay-guided fractionation protocol used to isolate and characterize the bioactivity of male sea lamprey sex pheromone compounds. The sea lamprey (Petromyzon marinus) is an ideal vertebrate model to study pheromone communication because these fish rely heavily on the olfactory detection of chemical cues to mediate their anadromous life history comprised of three distinct stages: larvae, juvenile, and adult. Sea lamprey larvae burrow into the sediment of freshwater streams, undergo a drastic metamorphosis, and transform into juveniles that migrate to a lake or ocean where they parasitize large host fish. After detaching from the host fish, the adults migrate back into spawning streams, guided by the migratory pheromones released by stream-resident larvae15,16,17,18,19. Mature males ascend to the spawning grounds, release a multi-component sex pheromone to attract mates, intermittently spawn for approximately a week, and then die15,20. The identification of sea lamprey pheromones is important because a modulation of the pheromone communication system is among the options considered to control the invasive sea lampreys in the Laurentian Great Lakes21.
All methods described here have been approved by the Institutional Animal Care and Use Committee of Michigan State University (AUF# 03/14-054-00 and 02/17-031-00).
1. Collection and Extraction of Sea Lamprey Conditioned Water
2. Isolation of Fraction Pools with Chromatography
3. Electro-olfactogram (EOG) Recordings to Identify Odorous Fractions/Compounds
4. Two-choice Maze Behavioral Bioassay to Identify Behaviorally Active Fractions/Compounds
5. Chromatographic Isolation of Pure Compounds from Active Fractions
6. Structure Elucidation of a Pure Compound with Mass Spectrometry (MS) and Nuclear Magnetic Resonance (NMR)
7. EOG and Bioassay to confirm pure compounds are odorous and behaviorally active
A diagram summarizing the steps described in the protocol of the bioassay-guided fractionation is shown in Figure 1. The protocol involves steps to isolate and characterize the structure, the olfactory potency, and the behavioral activity of 5 putative sea lamprey pheromones (Figure 2). Using the mass spectrometric and NMR data (Figure 3 and Figure 4), the structures of petromyzene A-B and petromyzone A-C were elucidated from water conditioned with mature male sea lampreys22,29.
Our representative data from the EOG recordings (Figure 5) demonstrate that petromyzene A-B and petromyzone A-C were all potent odorants that stimulated the adult sea lamprey olfactory epithelium and had low thresholds of detection (Figure 6). Of particular note, the EOG recordings require a proper placement of the recording electrode on the surface of the olfactory epithelium relative to the stimulus delivery tube to result in a good signal-to-noise ratio for reliable odorant response recordings (Figure 5B). If this critical step is not followed, it will be difficult to discern the signal induced by the odorant amongst the high noise. The downward deflection of the EOG trace after the odorant exposure is a negative potential. A good EOG signal should show an odorant administration resulting in a quick and sharp response followed by a recovery to the baseline. The olfactory responses to the putative pheromones were also normalized to the responses of 10-5 M L-arginine, a positive control odorant in the sea lamprey, tested throughout the experiment to ensure the integrity of the recordings was maintained.
In the two-choice maze behavioral assays (Figure 7A), ovulated female sea lampreys were attracted to petromyzone A, petromyzene A, and petromyzene B, and repulsed from petromyzone C. Ovulated females appeared to be repulsed from petromyzone B; however, the behavioral response was not significant (Figure 7B). A larger sample size was not possible due to the limited quantity of petromyzone B. To properly assess the behavioral response to an odorant, it is critical to record the pretreatment bias for the control and experimental channel of each lamprey.
Figure 1: A flowchart of the bioassay-guided fractionation of pheromones. This figure is adapted from Figure 2 in Li, Buchinger, and Li30. The boxes indicate the resulting chemical product from the technique indicated in the oval. Please click here to view a larger version of this figure.
Figure 2: The chemical structures of petromyzene A-B and petromyzone A-C. This figure is modified from the Figures 1 in Li et al.22,29. Please click here to view a larger version of this figure.
Figure 3: 1D NMR spectra. 1D NMR spectra of petromyzene A: (A) the 1H NMR (900 MHz) spectrum and (B) the 13C NMR (225 MHz) spectrum. This figure is from the supporting information in Li et al.29. Please click here to view a larger version of this figure.
Figure 4: 2D NMR spectra. 2D NMR spectra of petromyzene A: (A) the HSQC spectrum, (B) the 1H-1H COSY spectrum, (C) the HMBC spectrum, and (D) the NOESY spectrum. This figure is from the supporting information in Li et al.29. Please click here to view a larger version of this figure.
Figure 5: Electro-olfactogram (EOG) recording preparation and representative trace recordings. (A) This is an EOG preparation showing the exposed sea lamprey olfactory epithelium with the recording electrode, the reference electrode, the odorant delivery tube, and the oxygenated water with the anesthetic. (B) This panel shows representative trace recordings demonstrating good (top) or bad (bottom) signal-to-noise ratios. A good signal-to-noise ratio is necessary for reliable odorant responses recordings. The downward deflection of the EOG trace after the odorant exposure is a negative potential. Please click here to view a larger version of this figure.
Figure 6: A semi-logarithmic plot of electro-olfactogram (EOG) concentration-response curves. Petromyzone A-C and petromyzene A and B were stimulatory to the adult sea lamprey olfactory epithelium and had low detection thresholds. The data are presented as the mean normalized EOG amplitude ± S.E.M. The sample sizes were as follows: petromyzone A, petromyzene A, and petromyzene B (n = 7), and petromyzone B and petromyzone C (n = 5). The inset is an expanded view of EOG responses showing response threshold concentrations. This figure has been modified from Figure 3 in Li et al.22 and Figure 4 in Li et al.29. Please click here to view a larger version of this figure.
Figure 7: A schematic and the results of the two-choice maze used to evaluate the behavioral responses of ovulated female sea lampreys to odorants. (A) The arrow represents the direction of the water flow (0.07 m s-1 ± 0.01). The circles represent the odorant administration points. The small dashed lines represent fine mesh used to restrict the movement of the sea lamprey to the confines of the maze. The large dashed lines represent flow boards used to reduce water turbulence. The gray rectangle represents the release cage. The scale bar = 1 m. This figure is from Figure S1 in Li et al.29. (B) Females were attracted to petromyzone A, petromyzene A, and petromyzene B. The time the lamprey spent in each channel of the maze before and after the odorant exposure (10-12 M) was used to calculate an index of preference to assess its behavioral response to the odorant. A positive value of the index of preference indicates attraction. The sample size, n, is reported outside the parentheses, and the number in the parentheses indicates the number of females across trials that spent more time in the experimental channel compared to the control. The data are presented as mean ± S.E.M. (* p < 0.05; Wilcoxon signed-rank test) to compare the behavioral preference before and after the odorant exposure. This figure has been modified from Figure 4 in Li et al.22 and Figure 5 in Li et al.29. Please click here to view a larger version of this figure.
Supplementary Figure 1: A photograph of the maze. Please click here to download this file.
Fish live in a chemical world full of compounds yet to be identified. Bioassay-guided fractionation has proven essential to identify and characterize bioactive molecules that mediate many chemical interactions, such as those observed in masu salmon31, Asian elephants32, and sea lampreys33,34,35. Bioassay-guided fractionation is an effective approach to accurately trace and pinpoint the bioactive compounds from the starting extract to the purified active compound. Using this approach, the identified bioactive compounds can reveal a novel compound with a unique chemical skeleton that is unlikely to be predicted from the known biosynthetic pathways.
EOG recordings are conducted to determine which fractions or compounds elicit olfactory responses. Several technical considerations are imperative to accurately measure the olfactory responses to the putative pheromones with EOG recordings. First, in accordance with the Institutional Animal Care and Use Committee approved procedures, the fish must be deeply anesthetized with 3-aminobenzoic acid ethyl ester (MS222) and immobilized with an intramuscular injection of gallamine triethiodide. The recording electrode will detect any movement of the gills and heartbeat due to an insufficient immobilization, which can be a source of electrical noise. Second, the olfactory epithelium should be immediately exposed to charcoal-filtered water after the dissection to prevent desiccation. Adjusting the location of the recording and reference electrode with the micromanipulators, the electrical ground, and the odorant delivery tube can help maximize the response to the positive control odorant while minimizing the response to the blank control (filtered water). Third, after identifying a sensitive recording location in the olfactory epithelium, it is important to record from a similar position on the lamellae to minimize variation. To consistently record from a similar location, keep the tank and the V-shaped plastic stand holding the fish, the microscope, the odorant delivery tube, and the micromanipulators in the same position. The anesthetic tube must remain in the fish's buccal cavity for the duration of the experiment to ensure it remains anesthetized. However, the placement within the buccal cavity and the flow rate of the anesthetic can be modified if the recording electrode is detecting the movement of the water resulting in an erratic baseline of the electrical signal.
The design of the behavioral assay should be tailored to the behavioral ecology of the test subject and the research question of interest. Two-choice maze behavioral assays are used to determine if any of the odorous fractions are also behaviorally active. Because purified compounds are often only available in minute amounts, the maze is a beneficial behavioral bioassay compared to the stream due to a lower discharge. We were interested in assessing the near-source preference of putative sex pheromones released by mature males predicted to attract mature female mates in close proximity and retain them on a nest for spawning. The behavioral assay was designed to replicate the natural conditions of an ovulated female choosing between the odorants of the mature males. Therefore, it was relevant to test ovulated females as the test subject in our behavior experiments. However, depending on the odorant tested, other test subjects (i.e., different life stage or males) may be more appropriate. Variations on the dimensions of the two-choice maze may be necessary depending on the size of the test subject and the predicted active space of the pheromone (i.e., near source versus long distance)36. Likewise, behavioral responses are often concentration dependent. If a behavioral response is not observed when the putative pheromone is applied at the detection threshold concentration determined with EOG, the concentration of the pheromone should be adjusted. However, it should be noted that even if a compound is a potent odorant, it may not necessarily induce a significant behavioral preference. Ultimately, the behavioral responses observed in the maze should be validated in a field setting with the synthetic compound to confirm the function of the putative pheromone.
One major limitation of bioassay-guided fractionation is the sequential testing of individual fractions or compounds in a bioassay (EOG or behavior). Previous work has shown insect sex pheromones are typically mixtures of multiple components at specific ratios37 that function independently as components38 or synergistically as blends39 to induce the appropriate responses in conspecifics. Therefore, compounds that are only active when present in specific mixtures may be overlooked with bioassay-guided fractionation because they require combinatorial tests to confirm the bioactivity. Other limitations of bioassay-guided fractionation include: 1) a large quantity of starting material is necessary to have a sufficient amount for the structural analysis, EOG, and behavioral assays; 2) the process is time-consuming due to the iterative purification process; and 3) minuscule or unstable compounds are unlikely to be detected. In the future, overcoming some of the technical limitations of bioassay-guided fractionation may require a hybridized approach of bioassay-guided fractionation and metabolomics. Using a hybridized approach, additive or synergistic pheromone effects are more likely to be discerned13 and unstable compounds are more likely to be detected.
The described bioassay-guided fractionation process is specifically designed for the identification of sea lamprey pheromones. However, chemical communication is ubiquitous in the animal kingdom1 and this process can be readily adapted to characterize the pheromones in a broad array of taxa. Pheromone identification and characterization are important because pheromones can be applied to modulate behavioral responses resulting in the control of invasive species or in the restoration of imperiled native species.
The authors have nothing to disclose.
We thank the U.S. Geological Survey Hammond Bay Biological Station for the use of their research facilities and the staff of U.S. Fish and Wildlife Service and Fisheries and Oceans Canada for providing sea lampreys. This research was supported by grants from the Great Lakes Fishery Commission to Weiming Li and Ke Li.
Premium standard wall borosilicate capillaries with filament | Warner Instruments | G150F-4 | recording and reference electrode (OD 1.5 mm, ID 0.86 mm) |
Pipette puller instrument | Narishige | PC-10 | pulls electrodes for EOGs |
Diamond-tipped glass cutter | Generic | cut tip of electrodes for EOG | |
Borosilicate glass capillaries | World Precision Instruments | 1B150-4 | odorant delivery tube for EOG |
Recording electrode holder E Series straight body with Ag/AgCl pellet for glass capillary OD 1.5 mm | Warner Instruments | ESP-M15N | recording electrode holder |
Reference electrode holder E Series with handle with Ag/AgCl pellet for glass capillary OD 1.5 mm | Warner Instruments | E45P-F15NH | reference electrode holder |
1 mm pin | Warner Instruments | WC1-10 | to bridge reference and recording electrode holders |
2 mm pin | Warner Instruments | WC2-5 | to bridge reference and recording electrode holders |
Agar | Sigma | A1296 | molten agar to fill electrodes |
Potassium chloride (KCl) | Sigma | P9333 | 3M KCl to fill electrodes and electrode holders |
Micropipette microfil | World Precision Instruments | MF28G-5 | to fill electrodes and electrode holders |
L-Arginine | Sigma | A5006 | positive control odorant for EOG |
Methanol | Sigma | 34860 | |
Water bath | Custom made | N/A | holds odorants for EOG |
3-aminobenzoic acid ethyl ester (MS222) | Syndel USA | Tricaine1G | EOG anesthetic |
Gallamine triethiodide | Sigma | G8134-5G | EOG paralytic |
1 mL syringe | BD Biosciences | 301025 | to administer paralytic |
Subcutaneous needle 26G 5/8 | BD Biosciences | 305115 | to administer paralytic |
Roller clamp | World Precision Instruments | 14043-20 | adjust flow rate of anesthic into lamprey's mouth |
Sodium chloride (NaCl) | J.T. Baker | 3624-05 | for preparation of 0.9% saline |
V-shaped plastic stand as specimen stage | Custom made | N/A | holds lamprey during EOG |
Plastic trough | Custom made | N/A | holds V-shaped plastic stand during EOG |
Scalpel Blades – #11 | Fine Science Tools | 10011-00 | for EOG dissection |
Scalpel Handle – #3 | Fine Science Tools | 10003-12 | for EOG dissection |
Straight ultra fine forceps | Fine Science Tools | 11252-00 | for EOG dissection, Dumont #5SF Forceps |
Curved ultra fine forceps | Fine Science Tools | 11370-42 | for EOG dissection, Moria MC40B |
Straight pring Scissors | Fine Science Tools | 15003-08 | for EOG dissection |
Stereomicroscope | Zeiss | Discovery V8 | for EOG dissection |
Illuminator light | Zeiss | CL 1500 ECO | for EOG dissection |
Plastic tubing | Generic | to connect re-circulating EOG setup and water baths | |
Odorant delivery tubing | Custom made | N/A | |
In line filter and gasket set | Lee Company | TCFA1201035A | |
Micromanipulators | Narishige | MM-3 | to position electrodes and odorant delivery capillary tube |
Magnetic holding devices | Kanetec | MB-K | |
Valve driver | Arduino | custom made | to control the opening of the valve for odor stimulation |
Electromagnetic valve | Lee Company | LFAA1201618H | valve for odor stimulation |
NeuroLog AC/DC amplifier | Digitimer Ltd. | NL106 | to increase the amplitude of the elictrical signal |
NeuroLog DC pre-amplifier with headstage | Digitimer Ltd. | NL102G | to increase the amplitude of the elictrical signal |
Low-pass 60 Hz filter | Digitimer Ltd. | NL125 | |
Digitizer | Molecular Devices LLC | Axon Digidata 1440A | |
Dell computer (OptiPlex 745) running Axoscope data acquistion software | Molecular Devices LLC | AxoScope version 10.4 | |
Faraday cage | Custom made | N/A | Electromagnetic noise shielding |
Two-choice maze | Custom made | N/A | waterproofed marine grade plywood covered with plastic liner |
Trash pump | Honda | WT30XK4A | fills maze with water from nearby river |
Peristaltic pump with tubing | Cole Parmer | Masterflex 07557-00 | to adminster odorants in maze |
Inverter Generator | Honda | EU1000i | powers perstaltic pump |
Release cage | Custom made | N/A | used to acclimate lamprey in the maze |
Mesh | Generic | used to contain the dimensions of the maze and minimize water turbulance with mesh rollers | |
Buckets (5 gallon) | Generic | to mix odorants | |
Flow meter | Marsh-McBirney | Flo-Mate 2000 | to measure discharge |
XAD 7 HP resin | Dow chemical | 37380-43-1 | for extraction of conditioned water |
Methanol | Sigma | 34860 | for extraction of conditioned water |
Water bath | Yamato | BM 200 | for extraction of conditioned water |
Freeze dryer | Labconco | CentriVap Concentrator | for extraction of conditioned water |
chloroform | Sigma | CX1050 | for isolation of fraction pools |
Silica gel 70-230 mesh | Sigma | 112926-00-8 | for isolation of fraction pools |
Silica gel 230-400 mesh | Sigma | 112926-00-8 | for isolation of fraction pools |
Pre-coated silica gel TLC plates | Sigma | 99571 | for isolation of fraction pools |
anisaldehyde | Sigma | A88107 | for isolation of fraction pools |
Sephadex LH-20 | GE Healthcare | 17-0090-01 | for isolation of fraction pools |
Amberlite XAD 7 HP resin | Sigma | XAD7HP | for extraction of conditioned water |
4, 2.5L capacity glass columns | Ace Glass Inc. | 5820 | for extraction of conditioned water |
Acetone | Sigma | 650501 | for extraction of conditioned water |
TQ-S TOF LC Mass spectrometer (or equivalent) | Waters Co. | N/A | for structure elucidation |
Binary HPLC pump | Waters Co. | 1525 | for isolation of fraction pools/compounds |
Agilent NMR spectrometer, 900MHz (or equivalent) | Agilent | N/A | for structure elucidation |
Rotovap drying system | Buchi | RII | for extraction of conditioned water |
UV lamp (254 nm) | Spectronics Co. | ENF-240C | for thin layer chromatography |