El objetivo de este protocolo es realizar la hibridación en situ en adultos muestras de corales que han sido incrustadas en parafina y seccionadas en portaobjetos de vidrio. Se trata de un método cualitativo utilizado para visualizar la expresión espacial de una sonda de RNA anti sentida en tejidos embebidos en parafina.
Los corales son invertebrados océano importantes que son críticos para la salud general de los océanos y salud humana. Sin embargo, debido a los impactos humanos tales como el aumento de las temperaturas de océano y la acidificación del océano, los corales son cada vez más bajo amenaza. Para abordar estos desafíos, los avances en biología celular y molecular han demostrado para ser crucial para diagnosticar la salud de los corales. Modificar algunas de las técnicas utilizadas en medicina humana podría mejorar grandemente capacidad de los investigadores para tratar y salvar a los corales. Para hacer frente a esto, un protocolo para en situ hibridación utilizado principalmente en medicina humana y Biología del desarrollo evolutiva ha sido adaptado para su uso en adultos corales bajo estrés.
El propósito de este método es visualizar la expresión espacial de una sonda de RNA en tejido coral adulto que ha sido incluida en parafina y seccionadas en portaobjetos de vidrio. Este método se centra en la eliminación de la parafina y rehidratación de la muestra, tratamiento previo de la muestra para asegurar la permeabilidad de la muestra, pre-hibridación incubación, hibridación de la sonda de RNA y la visualización de la sonda de RNA. Este es un método eficaz al utilizar organismos no-modelo para descubrir donde se expresan genes específicos, y el protocolo puede ser fácilmente adaptado para otros organismos no-modelo. Sin embargo, el método es limitado en tanto que es principalmente cualitativo, porque la intensidad de la expresión puede variar dependiendo de la cantidad de tiempo utilizado durante la etapa de visualización y la concentración de la sonda. Además, la paciencia es necesaria, ya que este protocolo puede tomar hasta 5 días (y en muchos casos, más) dependiendo de la sonda se utiliza. Finalmente, la tinción de fondo inespecífica es común, pero esta limitación puede ser superada.
Los corales son ecosistemas críticos e importantes para la biodiversidad en el océano y salud humana1,2,3. Están bajo amenaza debido al cambio climático y otros estresores antropogénicos, y muchas especies de coral se consideran en peligro crítico. Así, hay una necesidad importante de herramientas celulares y moleculares para diagnosticar los corales bajo estrés. Además, allí es poco entendido sobre que genes se expresan en el tejido adulto de coral y por lo tanto poca comprensión de las funciones de estos genes. Para solucionar este problema, nos hemos adaptado en situ hibridación (ISH) protocolo, comúnmente utilizado en medicina humana y Biología del desarrollo evolutiva, para uso en muestras de tejido parafina-encajado de corales adultos. Esta técnica es más poderosa cuando se utiliza en los corales de adultos que han sufrido un evento estresante como la exposición a estrés por calor. Sin embargo, esta técnica puede utilizarse en una amplia gama de tejidos y etapas de la vida en los corales y no se limita a sólo corales subrayó calor4,6,7. Además, esta técnica puede utilizarse en tejidos o células de cualquier metazoarios, siempre y cuando se dispone de información de la secuencia de cDNA.
El propósito de este método es visualizar sondas de RNA en tejido coral adulto que ha sido preservado y embebido en parafina y seccionadas en diapositivas. Este método es una poderosa herramienta de diagnóstico que permite la visualización de los ácidos nucleicos dentro de tejido adulto de coral. Este método fue desarrollado inicialmente para diagnóstico médico, y desde entonces se ha convertido en una herramienta popular en campos como la biología del desarrollo y biología de desarrollo evolutiva8,9,10. ISH es también un método crítico, particularmente en los sistemas de modelo no, cuando genómicos y transcriptómicos secuencia datos están disponibles pero patrones de expresión génica espacial son desconocidos. Para el trabajo de diagnóstico en sistemas no modelo, esta técnica es poderosa porque puede indicar que las células y los tejidos expresan un gen de interés y pueden conducir a enfoques terapéuticos dirigidos más de8,9,10, 11,12. Por último, esta técnica es cualitativa y más potente cuando se combina con la expresión de genes cuantitativos datos11.
El enfoque esbozado en este trabajo será de interés para los investigadores que ya han diseñado un digoxigenina (DIG)-etiquetados RNA sonda (puntas de prueba el sentido y antisentido) y está ahora listo para realizar en situ el hibridación de las puntas de prueba a una muestra. Para realizar este método, se necesitarán dos secciones seriadas del tejido parafina coral para cada sonda ensayada. Se utilizará una sección de la sonda de sentido y el otro para la sonda antisentida. La sonda sentido será un control para indicar la fijación no específica. Si la coloración se observa en la punta de prueba de sentido, la punta de prueba antisentido no es específico del ARN de interés. Las sondas se pueden diseñar para cualquier gen expresado. En este protocolo, se utilizan varios ejemplos que previamente fueron encontrados para ser expresado durante el estrés por calor en los corales: FBJ osteosarcoma murino homólogo del oncogene virales B (Fos-B), proteína activadora (AP1) y Tumor necrosis factor receptor 41 (TNFR 41)11. ISH con sondas de RNA marcados con DIG es preferible usar sondas radioactivas porque su manejo es mucho más seguro10. Además, esta técnica es altamente sensible y puede realizarse en una amplia gama de tejidos y embriones más allá de corales adultos destacó por el calor13,14,15,16.
El método descrito en el presente Protocolo se ha modificado del anterior trabajo de investigación médica y evolutiva del desarrollo8,9,10,12,17. Este protocolo se centra en los matices de un hibridación en situ con sonda marcada con DIG RNA anti-sentido en corales adultos, que han sido preservados y embebidos en parafina. Este método se puede tr…
The authors have nothing to disclose.
Este trabajo fue financiado por el premio no. OCE-1323652 a través de la nacional Science Foundation océano ciencia Postdoctoral Fellowship y el premio no.1012629 del programa de enriquecimiento Postdoctoral de Burroughs Wellcome Fund.
Denhardt's solution | Affymetrix | 70468 50 ML | |
Bioworld Alkaline phosphatase buffer | Fisher | 50-198-724 | |
Slide mailers | Fisher | 12-587-17B | |
Bioworld Alkaline phosphatase buffer | Fisher | 50-198-724 | |
50 mL Falcon tubes | Fisher | 14-959-49A | |
UltraPure Salmon Sperm DNA solution | Invitrogen | 15632-011 | |
PBS – Phosphate-Buffered Saline (10X) pH 7.4 | Invitrogen | AM9625 | |
UltraPure DNase/RNase-Free Distilled Water, 10 x 500 mL | Invitrogen | 10977-023 | |
UltraPure DNase/RNase-Free Distilled Water, 10 x 500 mL | Invitrogen | 10977-023 | |
UltraPure Salmon Sperm DNA solution | Invitrogen | 15632-011 | |
Slide white apex superior adhesive | Leica Biosystems | 3800080 | |
PBS solution, pH 7.4 | Life Technologies | 10010072 | |
Proteinase K, Molecular Grade, 2 mL | New England Biolabs | P8107S | |
Super Pap Pen Liquid Blocker | Promega | 22309 | |
DIG Anti-Digoxigenin-AP Fab fragments | Roche | 11093274910 | |
BM Purple, 100 mL | Roche | 11442074001 | |
DIG Wash and Block Buffer Set | Roche | 11585762001 | |
NBT/BCIP | Roche | 11681451001 | |
Formaldehyde solution, 500 mL size | Sigma-Aldrich | 252549-500ML | |
SSC Buffer 20X concentration | Sigma-Aldrich | S6639-1L | |
Acetic Anhydride | Sigma-Aldrich | 320102-100ML | |
Formamide | Sigma-Aldrich | 47670-250ML-F | |
Triethanolamine | Sigma-Aldrich | 90279-100ML | |
Heparin sodium salt from porcine intestinal mucosa | Sigma-Aldrich | H3149-10KU | |
Xylenes, AR (ACS), For Histological Use | VWR | MK866806 | |
Ethanol | VWR | EM-EX0276-4S | |
TE buffer | VWR | PAV6232 | |
hybridization oven | VWR | 97005-252, 97005-254 | |
Orbital shaker | VWR | 89032-088 |