Summary

Hsp33 の酸化還元規制シャペロン活性を定義および水素重水素交換質量分析法による Hsp33 の構造変化をマッピング

Published: June 07, 2018
doi:

Summary

生物がその有効期間中に発生する最も困難なストレス条件の 1 つは酸化物質の蓄積を含みます。酸化ストレス時に細胞は分子シャペロンに大きく依存します。HDX MS を用いたシャペロン機能を支配する構造の変更を監視する活動を調査、レドックス制御抗凝集、同様に使用するメソッドを紹介します。

Abstract

生きている有機体は定期的に温度、pH、活性酸素種の蓄積の変化など、ライフ サイクルの間に変動環境に対処する必要があります。これらの変動と広範なタンパク質を展開、集計につながることができます細胞死。したがって、細胞は、ストレス条件の中に「健康」のプロテオームを維持する分子シャペロンの動的およびストレス固有ネットワークを進化してきました。ATP に依存しないシャペロンは、ストレス依存的蛋白質の集合からの保護の最初のライン防衛分子となる分子シャペロンの 1 つの主要なクラスを構成します。これらのシャペロンが共通の機能の 1 つストレス固有活性化、認識、および誤って折りたたまれたクライアントのリリースのための可塑性を利用できることです。

本稿で我々 はそのようなの 1 つの本質的に乱れたシャペロン、タンパク質を酸化ストレス時に集計対象を保護する細菌酸化還元制御 Hsp33 の構造と機能解析に焦点を当てます。ここでは、その活動の基になるしてさまざまな技法、シャペロンの構造変化をマッピングするためだけでなく、酸化還元規制シャペロン活性を研究するためのツールボックスを提示します。具体的には、我々 はシャペロン抗凝集活性の in vitroの程度に焦点を当て、光散乱法を用いた解析に続いて完全還元と酸化型タンパク質の調製を含むワークフローを説明します、抗凝集活性とそのキネティクス。凝集アッセイ中に蓄積された頻繁に外れ値を克服するためにKfits、速度論的測定の容易な処理を可能にする新しいグラフィカル ツールの使用方法をについて説明します。このツールは、外れ値を削除すると、速度論的パラメーターを調整運動測定の他のタイプに簡単に適用できます。タンパク質の構造と機能の相関、するセットアップとシャペロンの構造変化のマッピングを可能にする水素重水素交換質量分析、構造の質量分析技術のワークフローについて述べるとHsp33 活動のさまざまな段階での基板。同様の手法は、他のタンパク質とタンパク質-リガンド相互作用に適用できます。

Introduction

細胞が活性酸素種 (ROS) 呼吸1,2タンパク質と脂質の酸化の34、および追加のプロセス5の副産物として生産の蓄積を頻繁に遭遇します。 6,7。ROS の細胞シグナリング8,9と免疫応答10など多様な生物学的プロセスに有益な役割にもかかわらず活性酸素産生とその解毒の間の不均衡が生じる、酸化につながる7を強調します。ROS の生物学的ターゲットには、タンパク質、脂質、核酸を酸化、構造と機能に影響を与えるが。したがって、細胞のオキシダントの蓄積が強く癌9,11, 炎症12,13, と高齢化14,を含む病態の多様な範囲にリンクします。15発症し、アルツハイマー病、パーキンソン病のなどの神経変性疾患の進行と ALS 疾患16,17,18に関与することがわかったとします。

新しく合成と成熟の両方のタンパク質は、タンパク質構造と機能19,20を形作る彼らの側鎖の潜在的に有害な変更により酸化に敏感。したがって、酸化ストレスは、通常、広範なタンパク質不活性化、フォールディング、集約、最終的に細胞死につながるに します。クライアントが誤って折りたたまれたタンパク質21 と安定な錯体を形成する代わりに、広範な蛋白質の集合を抑制する酸化還元に依存したシャペロンを利用するタンパク質の酸化損傷の可能性に対処するエレガントな携帯電話戦略の 1 つです。 ,,2223。これらの最初のライン防衛のシャペロンは、強力な抗凝集分子24に変換する (通常のシステイン残基) サイト固有の酸化によって急速にアクティブ化されます。酸化ストレス条件25,26 中に正規の ATP 依存性シャペロンが少ない効果的な酸化ストレスは結果の呼吸阻害と細胞の ATP レベル25の減少で、以来、27。そのため、ATP に依存しない付き添いのレドックス活性化再生細菌や真核生物におけるオキシダント濃度の蓄積に蛋白質の恒常性を維持する上で重要な役割 (例えば、Hsp3328細菌、Get3 ライダー29 30酵母、真核生物の進化: ペルオキシレドキシン31 )。これらのシャペロン活性は強くクライアント誤って折りたたまれたタンパク質の認識に関与する疎水性領域を明らかにするサイト固有の酸化による可逆的構造構造変化に依存します。

抗凝集機構とシャペロンによるクライアント タンパク質の認識を支配する原則の研究はシャペロン基板相互作用32,33のダイナミックなというヘテロな性質のため容易ではないです。 34,35,36,37。ただし、シャペロンの応力規制能力による抗凝集機能の理解を進めるため機会がある: 1) シャペロン、(例えば、酸化) アクティブおよびアクティブでない (例えばの 2 つの異なるフォームを取得削減)、導入または簡単に (例えば、酸化剤と還元剤)、それらの 2 に切り替えのストレス条件の除去で) 3 基板の広い範囲を持っている) によって評価される可能性がありますクライアント蛋白質と非常に安定した複合体を形成異なる構造方法論、及び 4) 基質認識とリリースでは、これらのシャペロンの大半は、折りたたみ機能を欠いている、酸化還元に依存した構造変化を介したを取り上げます。

ここでは、我々 は細菌酸化還元規制シャペロン Hsp33 の抗凝集活性、酸化誘起タンパク質凝集28に対して細菌の防衛システムの重要なコンポーネントを分析します。減少、Hsp33 はシャペロン アクティビティのないしっかりと折りたたまれた亜鉛結合タンパク質です。しかし、酸化ストレスにさらされたとき、Hsp33 は基板結合領域38,39を公開する大規模な構造変化を経る。酸化に強く行きの C 末端ドメインの 4 つの非常に節約されたシステイン残基が亜鉛イオンはリリースされた40です。これは、結果、隣接するリンカーの地域41の不安定化と C 末端ドメインの 2 つのジスルフィド結合の形成。C 末端とリンカーの地域は非常に柔軟な本質的にまたは部分的に障害として定義されています。非ストレス条件に戻り、減少、システイン、シャペロン抗凝集反応のない本来の折り畳まれた状態に戻ります。シャペロンのリフォールディングさらに展開につながり、バインドされたクライアント タンパク質リフォールディング38正規シャペロン システム DnaK/J への転送をトリガーするの不安定化します。Hsp33 の相互作用部位の分析は、Hsp33 を使用して両方をキャプチャするリンカーと N 末端ドメインの疎水性領域と同様、地域にその請求乱れたミスフォールド蛋白質クライアント防ぎ、その集計38,を示唆しています。42。 折り返しリンカー、C 末端ドメインでたたんだ状態でこれらの地域は非表示。興味深いことに、リンカーの地域は、隣接する C 末端ドメイン34の折りたたみの状態を「検出」Hsp33 の折り返しとアクティブでない状態のゲートキーパーとして機能します。(点突然変異または完全なシーケンスの摂動によってどちらか) の突然変異誘発によって不安定になり、一度 Hsp33 はその酸化還元に依存したシステイン43の酸化還元状態に関係なく恒常活性シャペロンに変換されます。

ここに示すプロトコルは、Hsp33 の酸化還元に依存したシャペロン活性と同様のマッピング活性化に伴う構造変化の監視、クライアントのタンパク質の結合を許可します。この方法論は、他のシャペロン クライアント認識モデルだけでなく、非シャペロン タンパク質-タンパク質相互作用を研究する合わせることができます。また、タンパク質酸化蛋白質の活動の潜在的な役割を明らかにする他のスイッチ酸化還元タンパク質の研究で使用ことができます完全に還元と酸化のシャペロンの準備のためのプロトコルを提案する.

具体的には、我々 はシャペロン活性の in vitro監視し、タンパク質凝集 (化学的にまたは熱) による光散乱 (LS) を使用してさまざまな種類の下でその基質特異性を定義するプロシージャを記述する、fluorospectrometer44。集計中に急速に増加の濁度による 360 nm の増加で散乱光。したがって、集計は、この波長での時間依存的に監視できます。LS は蛋白質の集合およびこうしてナノモル濃度では、異なるタンパク質凝集関連運動パラメーターの評価を有効にするを使用して興味の蛋白質の抗凝集活性テスト高速高感度法条件。さらに、ここで説明した LS プロトコルは高価な機器を必要としない、あらゆる研究室で簡単に設立することができます。

それにもかかわらず、「クリーン」の運動曲線を取得し、このような散乱ノイズと外れ値の空気の泡と大きな凝集体によって生成される数が多いため、実験から蛋白質の速度論的パラメーターを取得する非常に困難です。この障害を克服するために提案する新しいグラフィカル ツール、 Kfits45、特に蛋白質凝集反応速度データの装備別の運動測定の騒音レベルを減らすために使用します。このソフトウェアは、結果の初期評価のため予備の速度論的パラメーターを提供し、「クリーンアップ」する大量データの迅速にその動力学的性質に影響を与えることがなくユーザーをことができます。Kfitsは Python で実装されている45のオープン ソースで利用できます。

フィールドで挑戦的な質問の 1 つは、シャペロンとそのクライアントの蛋白質間相互作用部位のマッピングとシャペロンが誤って折りたたまれた基板の広い範囲を認識する方法を理解することに関係します。この問題はさらに複雑なシャペロンと集計しやすい基板上乱れた本質的に関連する非常にダイナミックな膜タンパク質を勉強します。幸いなことに、構造質量の最後の 10 年間で飛躍的に進んだし、有用なアプローチと構造の可塑性を分析してマップ残留タンパク質認識46に関連するツールを提供してきました47,48,49紹介 1 つこのような技術水素重水素交換質量分析 (HDX-)-タンパク質修飾やタンパク質・ リガンド結合35、構造構造の残留レベル変更のマッピングが可能。 50,51,52,53,,5455。HDX MS 重水素、割合とは、化学環境、アクセシビリティ、受けますがバックボーンの水素の連続的な交換を使用して、共有結合と共有結合56。HDX MS は重水素化溶媒、一般的重水 (D2O) を使用してこれらの exchange プロセスを追跡し、測定に基づく分子水素を重水素交換に次の変更が可能します。水素重水素交換の遅い速度は、水素の水素結合に参加することや、構造57でローカルの変更を示す立体障害から単に、起因できます。リガンド結合や翻訳後修飾に伴う変化は、水素重水素交換 (HDX) 率46,53の違いの結果バインドで水素環境の違いにつながることができます。

1) マップ Hsp33 の地域に急速に酸化、Hsp33 の活性化につながる時に展開し、2) そのフルレングスの誤って折りたたまれた基板、クエン酸合成酵素 (CS)38Hsp33 の潜在的なバインディング インターフェイスを定義するこの技術を適用されます。

本稿で説明する方法は、蛋白質の生体外蛋白質機能の抗凝集活性と構造変化の役割 (存在する場合) を定義する酸化還元に依存する関数の研究に適用できます。これらの方法は、簡単に多様な生物学的システムに適応して研究室で適用できます。

Protocol

1. 完全還元と酸化型タンパク質の作製 完全に低蛋白質の作製注: ここでは、亜鉛を含むタンパク質と亜鉛含有、低蛋白状態を復元する使用 ZnCl2ソリューションの削減について述べる.ZnCl2ソリューションを交換または破棄することができます。時間と温度の還元過程のタンパク質の安定性や機能によって異なり、タンパク質ごとの仕様は、注意してくだ?…

Representative Results

提示された 2 つのメソッドは、運動活動とシャペロンとその基質蛋白質の相互作用のダイナミクスに従うこと。また、酸化還元プロトコルには、酸化還元に依存した乱れたシャペロン活性化機構のより深い理解を与える、完全還元と酸化型シャペロンの準備ができます。 まず、シャペロンのレドックス依存性活性を調べ?…

Discussion

本稿で我々 は提供されたプロトコルの酸化還元に依存したシャペロン活性解析やクライアントのタンパク質の結合に伴う構造変化の解析。これらは潜在的なシャペロン-基質複合体を定義し、潜在的な相互作用のサイトを分析する相補的な方法論です。

ここでは、よく研究シャペロン基板 CS レドックス調節のシャペロン Hsp33 の複合体のキャラクタリゼーションのための?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

著者は、彼女の役に立つ議論の Meytal Radzinski に感謝と重要な記事のパトリック ・ グリフィンと彼の研究室のメンバーに HDX 解析プラットフォームを確立している間彼らの無制限の支援のために読んでいます。著者はドイツ-イスラエル財団 (私-2332-1149.9/2012)、二国間科学財団 (2015056)、マリー キュリー統合補助金 (618806)、イスラエル共和国の科学技術振興財団に感謝しています (2629 と 1765/13/16)、人間の新領域創成科学金融支援プログラム (CDA00064/2014 年)。

Materials

Chemicals, Reagents
Acetonitrile HPLC plus Sigma Aldrich 34998-2.5L solvent
Formic acid Optima LC/MS Fisher Chemicals A117-50 solvent supplement
Isopropyl alcohol, HPLC grade Fisher Chemicals P750717 solvent
Methanol Fisher Chemicals A456-212 solvent
Tris(hydroxymethyl)aminomethane Sigma Aldrich 252859 buffer
Trifluoroacetic acid Sigma Aldrich 76-05-1 solvent
Water for HPLC Sigma Aldrich 270733-2.5L-M solvent
ZnCl2, Zinc Chloride Merck B0755416 308 reagent
DTT goldbio 27565-41-9 reducing agent
PD mini trap G-25 columns GE healthcare GE healthcare 29-9180-07 desalting column
Potassium Phosphate United states Biochemical Corporation 20274 buffer
Hydrogen peroxide 30% Merck K46809910526 oxidizing agent
citrate synthase sigma aldrich C3260 substrate
HEPES acid free sigma aldrich 7365-45-9 buffer
Gndcl sigma aldrich G3272-500G denaturant
Deuterium Chloride Solution sigma aldrich 543047-10G buffer
Deuterium Oxide 99% sigma aldrich 151882-100G solvent
TCEP bioworld 42000058-2 reducing agent
150uL Micro-Insert with Mandrel Interior & Polymer Feet, 29*5mm La-Pha-Pack -Thermo Fischer Scientific
1.5mL Clear Short Thread Vial 9mm Thread, 11.6*32mm La-Pha-Pack -Thermo Fischer Scientific
quartz cuvette Hellma 101-QS
Instruments
Jasco FP-8500 Fluorospectrometer Jasco
Thermomixer Comfort Eppendorf 13058/0
Heraeus Megafuge 16R, bench topCentrifuge Thermo Scientific
pH meter , PB-11 sartorius Sartorius 13119/0
AffiPro Immobilized Pepsin column (20mm length, 2.0mm diameter). AffiPro
Waters Pre-column (ACQUITY UPLC BEH C18 VanGuard 130 Å, 1.7um, 2.1mmx5mm) Waters
C18 analytical column (ACQUITY UPLC Peptide BEH c18 Column, 130 Å, 1.7um, 2.1mmx50mm)
Vinyl Anaerobic chamber with Airlock door COY
Q-exactive-orbitrap mass spectrometer Thermo-Fischer Scientific
PAL system LHX – robotic system for handling HDX samples PAL system https://www.palsystem.com/index.php?id=840
Dionex Ultimate 3000, XRS pump Thermo Scientific
Dionex AXP-MS auxiliary pump Thermo Scientific
Software, Software Tools, Database search
Kfits: Fit aggregation Data http://kfits.reichmannlab.com/fitter/
Thermo Scientific Xcalibur software https://www.thermofisher.com/order/catalog/product/OPTON-30487
Q Exactive MS Series Tune Interface (Tune) https://tools.thermofisher.com/content/sfs/brochures/WS-MS-Q-Exactive-Calibration-Maintenance-iQuan2016-EN.pdf
Chronos software (Axel Semrau) http://www.axel-semrau.de/en/Software/Software+Solutions/Chronos-p-966.html
Proteome Discoverer V1.4 software https://www.thermofisher.com/order/catalog/product/OPTON-30795
HDX workbench software http://hdx.florida.scripps.edu/hdx_workbench/Home.html

Riferimenti

  1. Wong, H. S., Dighe, P. A., Mezera, V., Monternier, P. A., Brand, M. D. Production of superoxide and hydrogen peroxide from specific mitochondrial sites under different bioenergetic conditions. Journal of Biological Chemistry. 292 (41), 16804-16809 (2017).
  2. Murphy, M. P. How mitochondria produce reactive oxygen species. Biochemical Journal. 417 (1), 1-13 (2009).
  3. Walker, C. L., Pomatto, L. C. D., Tripathi, D. N., Davies, K. J. A. Redox regulation of homeostasis and proteostasis in peroxisomes. Physiological Reviews. 98 (1), 89-115 (2018).
  4. Hohn, A., Konig, J., Jung, T. Metabolic syndrome, redox state, and the proteasomal system. Antioxidants & Redox Signaling. 25 (16), 902-917 (2016).
  5. Holmstrom, K. M., Finkel, T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nature Reviews Molecular Cell Biology. 15 (6), 411-421 (2014).
  6. Halliwell, B., Gutteridge, J. M. C. . Free radicals in biology and medicine. , (2007).
  7. He, L., et al. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology. 44 (2), 532-553 (2017).
  8. Bae, Y. S., Oh, H., Rhee, S. G., Yoo, Y. D. Regulation of reactive oxygen species generation in cell signaling. Molecules and Cells. 32 (6), 491-509 (2011).
  9. Giles, G. I. The redox regulation of thiol dependent signaling pathways in cancer. Current Pharmaceutical Design. 12 (34), 4427-4443 (2006).
  10. Qiao, J., et al. Regulation of platelet activation and thrombus formation by reactive oxygen species. Redox Biology. 14, 126-130 (2018).
  11. Milkovic, L., Siems, W., Siems, R., Zarkovic, N. Oxidative stress and antioxidants in carcinogenesis and integrative therapy of cancer. Current Pharmaceutical Design. 20 (42), 6529-6542 (2014).
  12. Duecker, R., et al. Oxidative stress-driven pulmonary inflammation and fibrosis in a mouse model of human ataxia-telangiectasia. Redox Biology. 14, 645-655 (2018).
  13. Winterbourn, C. C., Kettle, A. J. Redox reactions and microbial killing in the neutrophil phagosome. Antioxidants & Redox Signaling. 18 (6), 642-660 (2013).
  14. Jones, D. P. Redox theory of aging. Redox Biology. 5, 71-79 (2015).
  15. Labunskyy, V. M., Gladyshev, V. N. Role of reactive oxygen species-mediated signaling in aging. Antioxidants & Redox Signaling. 19 (12), 1362-1372 (2013).
  16. Kurian, P., Obisesan, T. O., Craddock, T. J. A. Oxidative species-induced excitonic transport in tubulin aromatic networks: potential implications for neurodegenerative disease. Journal of Photochemistry and Photobiology B: Biology. 175, 109-124 (2017).
  17. Marinelli, P., et al. A single cysteine post-translational oxidation suffices to compromise globular proteins kinetic stability and promote amyloid formation. Redox Biology. 14, 566-575 (2018).
  18. Bozzo, F., Mirra, A., Carrì, M. T. Oxidative stress and mitochondrial damage in the pathogenesis of ALS: new perspectives. Neuroscience Letters. 636, 3-8 (2017).
  19. Lo Conte, M., Carroll, K. S. The redox biochemistry of protein sulfenylation and sulfinylation. Journal of Biological Chemistry. 288 (37), 26480-26488 (2013).
  20. Reichmann, D., Jakob, U. The roles of conditional disorder in redox proteins. Current Opinion in Structural Biology. 23 (3), 436-442 (2013).
  21. Suss, O., Reichmann, D. Protein plasticity underlines activation and function of ATP-independent chaperones. Frontiers in Molecular Biosciences. 2, 43 (2015).
  22. Voth, W., Jakob, U. Stress-activated chaperones: a first line of defense. Trends in Biochemical Sciences. 42 (11), 899-913 (2017).
  23. Segal, N., Shapira, M. HSP33 in eukaryotes – an evolutionary tale of a chaperone adapted to photosynthetic organisms. The Plant Journal. 82 (5), 850-860 (2015).
  24. Dahl, J. U., Gray, M. J., Jakob, U. Protein quality control under oxidative stress conditions. Journal of Molecular Biology. 427 (7), 1549-1563 (2015).
  25. Winter, J., Linke, K., Jatzek, A., Jakob, U. Severe oxidative stress causes inactivation of DnaK and activation of the redox-regulated chaperone Hsp33. Molecular Cell. 17 (3), 381-392 (2005).
  26. Wang, J., Sevier, C. S. Formation and reversibility of BiP protein cysteine oxidation facilitate cell survival during and post oxidative stress. Journal of Biological Chemistry. 291 (14), 7541-7557 (2016).
  27. Zhang, H., et al. Glutathionylation of the bacterial Hsp70 chaperone DnaK provides a link between oxidative stress and the heat shock response. Journal of Biological Chemistry. 291 (13), 6967-6981 (2016).
  28. Jakob, U., Muse, W., Eser, M., Bardwell, J. C. Chaperone activity with a redox switch. Cell. 96 (3), 341-352 (1999).
  29. Muller, A., et al. Activation of RidA chaperone function by N-chlorination. Nature Communications. 5, 5804 (2014).
  30. Voth, W., et al. The protein targeting factor Get3 functions as ATP-independent chaperone under oxidative stress conditions. Molecular Cell. 56 (1), 116-127 (2014).
  31. Moon, J. C., et al. Oxidative stress-dependent structural and functional switching of a human 2-Cys peroxiredoxin isotype II that enhances HeLa cell resistance to H2O2-induced cell death. Journal of Biological Chemistry. 280 (31), 28775-28784 (2005).
  32. Wright, M. A., et al. Biophysical approaches for the study of interactions between molecular chaperones and protein aggregates. Chemical Communications. 51 (51), 14425-14434 (2015).
  33. Haslbeck, M., Vierling, E. A first line of stress defense: small heat shock proteins and their function in protein homeostasis. Journal of Molecular BIology. 427 (7), 1537-1548 (2015).
  34. Rimon, O., et al. A role of metastable regions and their connectivity in the inactivation of a redox-regulated chaperone and its inter-chaperone crosstalk. Antioxidants & Redox Signaling. 27 (15), 1252-1267 (2017).
  35. Daturpalli, S., Kniess, R. A., Lee, C. T., Mayer, M. P. Large rotation of the N-terminal domain of Hsp90 is important for interaction with some but not all client proteins. Journal of Molecular Biology. 429 (9), 1406-1423 (2017).
  36. Rist, W., Graf, C., Bukau, B., Mayer, M. P. Amide hydrogen exchange reveals conformational changes in hsp70 chaperones important for allosteric regulation. Journal of Biological Chemistry. 281 (24), 16493-16501 (2006).
  37. Koldewey, P., Horowitz, S., Bardwell, J. C. A. Chaperone-client interactions: non-specificity engenders multifunctionality. Journal of Biological Chemistry. 292 (29), 12010-12017 (2017).
  38. Reichmann, D., et al. Order out of disorder: working cycle of an intrinsically unfolded chaperone. Cell. 148 (5), 947-957 (2012).
  39. Winter, J., Ilbert, M., Graf, P. C., Ozcelik, D., Jakob, U. Bleach activates a redox-regulated chaperone by oxidative protein unfolding. Cell. 135 (4), 691-701 (2008).
  40. Jakob, U., Eser, M., Bardwell, J. C. Redox switch of Hsp33 has a novel zinc-binding motif. Journal of Biological Chemistry. 275 (49), 38302-38310 (2000).
  41. Ilbert, M., et al. The redox-switch domain of Hsp33 functions as dual stress sensor. Nature Structural & Molecular Biology. 14 (6), 556-563 (2007).
  42. Groitl, B., et al. Protein unfolding as a switch from self-recognition to high-affinity client binding. Nature Communications. 7, 10357 (2016).
  43. Cremers, C. M., Reichmann, D., Hausmann, J., Ilbert, M., Jakob, U. Unfolding of metastable linker region is at the core of Hsp33 activation as a redox-regulated chaperone. Journal of Biological Chemistry. 285 (15), 11243-11251 (2010).
  44. Kumar, A., Mishra, S., Khan, E. Emerging methods for structural analysis of protein aggregation. Protein & Peptide Letters. 24 (4), 331-339 (2017).
  45. Rimon, O., Reichmann, D. Kfits: a software framework for fitting and cleaning outliers in kinetic measurements. Bioinformatics. 34 (1), 129-130 (2018).
  46. Percy, A. J., Rey, M., Burns, K. M., Schriemer, D. C. Probing protein interactions with hydrogen/deuterium exchange and mass spectrometry – a review. Analytica Chimica Acta. 721, 7-21 (2012).
  47. Sinz, A. Divide and conquer: cleavable cross-linkers to study protein conformation and protein-protein interactions. Analytical and Bioanalytical Chemistry. 409 (1), 33-44 (2017).
  48. Sinz, A., Arlt, C., Chorev, D., Sharon, M. Chemical cross-linking and native mass spectrometry: a fruitful combination for structural biology. Protein Science. 24 (8), 1193-1209 (2015).
  49. Schmidt, C., Beilsten-Edmands, V., Robinson, C. V. Insights into eukaryotic translation initiation from mass spectrometry of macromolecular protein assemblies. Journal of Molecular Biology. 428, 344-356 (2016).
  50. Marciano, D. P., Dharmarajan, V., Griffin, P. R. HDX-MS guided drug discovery: small molecules and biopharmaceuticals. Current Opinion in Structural Biology. 28, 105-111 (2014).
  51. Mistarz, U. H., Brown, J. M., Haselmann, K. F., Rand, K. D. Probing the binding interfaces of protein complexes using gas-phase H/D exchange mass spectrometry. Structure. 24 (2), 310-318 (2016).
  52. Harrison, R. A., Engen, J. R. Conformational insight into multi-protein signaling assemblies by hydrogen-deuterium exchange mass spectrometry. Current Opinion in Structural Biology. 41, 187-193 (2016).
  53. Brown, K. A., Wilson, D. J. Bottom-up hydrogen deuterium exchange mass spectrometry: data analysis and interpretation. Analyst. 142 (16), 2874-2886 (2017).
  54. Vadas, O., Jenkins, M. L., Dornan, G. L., Burke, J. E. Using hydrogen-deuterium exchange mass spectrometry to examine protein-membrane interactions. Methods in Enzymology. 583, 143-172 (2017).
  55. Zanphorlin, L. M., et al. Heat shock protein 90 kDa (Hsp90) has a second functional interaction site with the mitochondrial import receptor Tom70. Journal of Biological Chemistry. 291 (36), 18620-18631 (2016).
  56. Hvidt, A., Nielsen, S. O. Hydrogen exchange in proteins. Advances in Protein Chemistry. 21, 287-386 (1966).
  57. Roberts, V. A., Pique, M. E., Hsu, S., Li, S. Combining H/D exchange mass spectrometry and computational docking to derive the structure of protein-protein complexes. Biochimica. 56 (48), 6329-6342 (2017).
  58. Pascal, B. D., et al. HDX Workbench: software for the analysis of H/D exchange MS data. Journal of the American Society for Mass Spectrometry. 23 (9), 1512-1521 (2012).

Play Video

Citazione di questo articolo
Fassler, R., Edinger, N., Rimon, O., Reichmann, D. Defining Hsp33’s Redox-regulated Chaperone Activity and Mapping Conformational Changes on Hsp33 Using Hydrogen-deuterium Exchange Mass Spectrometry. J. Vis. Exp. (136), e57806, doi:10.3791/57806 (2018).

View Video