Descrito es una metodología para cuantificar la expresión de 96 genes y 18 proteínas de la superficie de células ex vivo, lo que permite la identificación de diferencialmente expresan genes y proteínas en células virus-infectadas en comparación con las células no infectadas. Aplicamos el enfoque de estudio CD4 infectados por SIV+ T las células aisladas de macaques del macaco de la India.
El análisis unicelular es una herramienta importante para poblaciones heterogéneas de células de disección. La identificación y aislamiento de células pueden ser difíciles. Para superar este desafío, una combinación de metodología indexadas citometría de flujo y reacción en cadena de alto rendimiento multiplexados cuantitativa de la polimerasa (qPCR) fue desarrollada. El objetivo fue identificar y caracterizar el virus de la inmunodeficiencia símica (VIS)-infectó las células presentes en macaques del macaco de la India. A través de la cuantificación de la proteína de la superficie de separación de células activado por fluorescencia (FACS) y mRNA por qPCR, células infectadas por virus se identifican por la expresión génica viral, que se combina con medidas gen y la proteína de host para crear un perfil multidimensional . Llamamos el enfoque de evaluación unicelulares Proteo-transcripcional dirigida y tSCEPTRE. Para realizar el método, células viables se tiñen con anticuerpos fluorescentes específicas para marcadores de superficie utilizados para el aislamiento de la FACS de un subconjunto de células y análisis fenotípico aguas abajo. Las células se clasifican seguido de lisis inmediata, multiplex transcripción reversa (RT), la amplificación por PCR y qPCR de alto rendimiento de hasta 96 transcripciones. Mediciones de FACS se registran en el momento de la clasificación y posteriormente vinculadas a los datos de expresión genética por posición bien para crear un perfil transcripcional y proteína combinada. Para estudiar infectados por SIV directamente células ex vivo, las células fueron identificadas por la detección de la qPCR de múltiples especies de RNA virales. La combinación de la transcripción viral y la cantidad de cada uno proporcionan un marco para clasificar las células en distintas etapas del ciclo de vida viral (p. ej., productivo versus no-productivos). Además, tSCEPTRE de las células SIV+ eran en comparación con no infectado células aisladas de la misma muestra para evaluar diferencialmente expresados anfitrión genes y proteínas. El análisis reveló previamente poco apreciado heterogeneidad de expresión RNA viral en células infectadas como en vivo gen postranscripcional mediada por SIV Reglamento con resolución unicelular. El método tSCEPTRE es relevante para el análisis de cualquier población de células susceptible de identificación por la expresión del marcador de la proteína de la superficie, host o patógeno genes o combinaciones de las mismas.
Muchos patógenos intracelulares dependen de maquinaria de la célula huésped para replicar, a menudo alterando la biología de la célula huésped o dirigidas a subpoblaciones muy específicas de las células del huésped para maximizar sus posibilidades de propagación. Como resultado, los procesos biológicos celulares comúnmente se interrumpen, con consecuencias deletéreas para la salud general del hospedero. Comprensión de las interacciones entre el virus y las células hospedadoras que replican a aclarar mecanismos de la enfermedad que pueden ayudar en el desarrollo de mejores terapias y estrategias para prevenir la infección. Directas herramientas analíticas que permiten el estudio de las interacciones huésped-patógeno son esenciales para este fin. Sola célula análisis proporciona el único medio para atribuir inequívocamente un fenotipo celular a un genotipo particular o infección estado1. Por ejemplo, infecciones patógenas frecuentemente inducen cambios directos e indirectos en las células del huésped. Por lo tanto, distinguir las células infectadas de sus contrapartes no infectadas es necesario cambios de atributo anfitrión célula infección directa o efectos secundarios, tales como generalizada inflamación. Por otra parte, para muchos patógenos, como el SIV y el virus de inmunodeficiencia humana (VIH), infección de la célula huésped procede a través de etapas múltiples, tales como temprano, tarde, o latente, que puede caracterizarse por genes distintos y de perfiles de expresión de la proteína2 , 3 , 4 , 5. Análisis de bulk de mezclas celular dejará de capturar esta heterogeneidad6. Por el contrario, altamente multiplexadas en análisis unicelulares capaces de cuantificar la expresión de ambos virus y genes de host ofrecen un medio para resolver las perturbaciones celulares específicos de infección, incluyendo las variaciones en distintas etapas de la infección. Además, análisis huésped-patógeno en fisiológicamente ajustes pertinentes es fundamental para la identificación de eventos que se producen en los organismos infectados. Así, los procesos de métodos que pueden aplicarse directamente ex vivo son probablemente mejor captura en vivo .
SIV y VIH objetivo CD4+ T las células, en el cual ellos contrarrestar factores antivirales “restricción” de host y downregulate antígeno que presenta las moléculas para establecer infección productiva y evitar la vigilancia inmune7,8, 9,10,11. Sin tratamiento, la infección resulta en la pérdida masiva de CD4+ T de las células, en última instancia culminando en adquirido de la inmunodeficiencia adquirida (SIDA)12. En el marco de la terapia antiretroviral, célula latente infectada depósitos persisten durante décadas, planteando una barrera formidable a estrategias curativas. Comprender las propiedades de en vivo células infectadas por el VIH/SIV tiene el potencial para revelar características de la célula de host en la patogenia y persistencia. Sin embargo, esto ha sido muy difícil, debido principalmente a la obviados de las células infectadas y la falta de reactivos capaces de identificarlos fácilmente. Las células que transcriben el ARN viral, se estima que en 0.01 – 1% de CD4+ T las células en la sangre y tejido linfoide13,14,15. Bajo tratamiento supresivo, células latente infectadas son aún menos frecuentes en 10-3-10-7 16,17,18. La coloración de la proteína viral ensayos que trabajo bien para el estudio de las infecciones in vitro , tales como Gag intracelular, son subóptimos debido a la tinción de fondo de 0.01 – 0.1%, similar o mayor que la frecuencia de las células infectadas13, 14. Coloración superficial para proteína Env bien caracterizados anticuerpos monoclonales SIV y VIH Env-específicas también ha demostrado ser difícil, probablemente por razones similares. Recientemente, nuevas herramientas tienen por objeto mejorar la detección de las células que expresan la mordaza ya sea por la incorporación de ensayos específicos para gag RNA o usando proyección de imagen alternativas tecnologías14,15,19. Sin embargo, estos enfoques siguen siendo limitados en el número de mediciones cuantitativas realizadas en cada célula.
Aquí, describimos la metodología que (1) identifica las células virus-infectadas directamente ex vivo por gene viral sensible y específico cuantitativo qPCR y (2) cuantifica la expresión de proteínas de la superficie hasta 18 y 96 genes por cada infectado (y célula no infectada). Esta metodología combina la medición de la proteína unicelular de la superficie por FACS seguido de lisis celular inmediata y análisis de expresión génica usando multiplexado qPCR específica en el sistema de Biomark. La tecnología integrado circuito fluídico (IFC) permite cuantificación multiplexada de 96 genes de 96 muestras al mismo tiempo, logrado por una matriz de 9.216 cámaras en las que se realizan las reacciones individuales de la qPCR. La clasificación de células vivas FACS registra las mediciones de abundancia de proteína de alto contenido mientras que preserva el transcriptoma completo para análisis realizados inmediatamente aguas abajo. Para identificar las células virus-infectadas, ensayos específicos para RNAs virales o bien empalmados y unspliced (vRNA) están incluidos en el análisis de qPCR, junto a un panel de análisis definidos por el usuario por un total de hasta 96 genes, el número máximo de ensayos actualmente alojados en la IFC. La expresión de genes y proteína información recogido para cada celda están vinculados por la posición bien. Divulgamos previamente los resultados de este análisis en otro lugar20. Presentamos más detallada lineamientos metodológicos así como más descriptivo phenotyping de CD4 infectados por SIV+ T las células.
Este enfoque, que llamamos tSCEPTRE, puede aplicarse a las suspensiones de cualquier población de células viables reactiva a anticuerpos fluorescente etiquetados y expresando un transcriptoma compatible con ensayos de qPCR disponibles. Por ejemplo, puede utilizarse para la caracterización génica diferencial y expresión de proteínas en las células raras o no fácilmente distinguidas por marcadores de la proteína de la superficie de las células. La preparación de la muestra se basa en un estándar de protocolo utilizando anticuerpos comercialmente disponibles de tinción. Citómetros con capacidad clasificación unicelulares están también disponibles comercialmente, pero medidas de bioseguridad adicionales son necesarios para el procesamiento de células vivas infecciosas. Registrar el perfil de expresión – una proteína de la célula para cada celda por bien puesto, contemplado en el presente como indexadas clasificación, es una característica común de FACS comercialmente disponible software de clasificación. Análisis computacional de genes diferencialmente expresados host entre poblaciones celulares de interés no se describen aquí, pero se proporcionan referencias a los métodos previamente publicados.
El protocolo aquí descrito, denominado tSCEPTRE, integra la cuantificación de la proteína unicelular de la superficie por citometría de flujo multiparamétrico con la expresión de mRNA de unicelular cuantitativa por RT-qPCR altamente multiplexado. La Unión de estas dos tecnologías permite instantáneas de alto contenido de combinado transcripcionales y perfil proteico de las células en un formato de alto rendimiento. Utilice el método para identificar células hasta ahora esquivos infectadas con SIV en vivo<…
The authors have nothing to disclose.
Los autores desean agradecer a la base de citometría de flujo de NIAID VRC y las instalaciones de la base de Cytometry del flujo MHRP para mantenimiento y operación de FACS instrumentos y equipos de clasificación; María Montero, Vishakha Sharma, Kaimei Song expertos asistencia técnica; Michael Piatak, Jr. (fallecido) para obtener ayuda con diseño de ensayo qPCR SIV; y Brandon Keele y Matthew Scarlotta para SIV aislar secuencias. Las opiniones expresadas son las de los autores y no deben ser interpretadas para representar las posiciones del ejército de Estados Unidos o el Departamento de defensa. Investigación se llevó a cabo bajo un protocolo aprobado uso de animales en una instalación AAALAC acreditado conforme a la ley de Bienestar Animal y otros estatutos federales y reglamentos relativos a los animales y experimentos con animales y se adhiere a los principios indicado en la guía para el cuidado y uso de animales de laboratorio, publicación del NRC, edición 2011.
RNA extraction and PCR reagents and consumables |
|||
Genemate 96-Well Semi-Skirted PCR Plate |
BioExpress/VWR |
T-3060-1 |
|
Adhesive PCR Plate Seals |
ThermoFisher |
AB0558 |
|
Armadillo 384-well PCR Plate |
ThermoFisher |
AB2384 |
|
MicroAmp Optical Adhesive Film |
Applied Biosystems/ThermoFisher |
4311971 |
|
DEPC Water |
Quality Biological |
351-068-101 |
|
Glass Distilled Water |
Teknova |
W3345 |
|
Superscript III Platinum One-Step qRT-PCR Kit |
Invitrogen/ThermoFisher |
11732088 |
|
SUPERase-In Rnase Inhibitor |
Invitrogen/ThermoFisher |
AM2696 |
|
Platinum Taq |
Invitrogen/ThermoFisher |
10966034 |
|
dNTP Mix |
Invitrogen/ThermoFisher |
18427088 |
|
ROX Reference Dye (if separate from kit) |
Invitrogen/ThermoFisher |
12223012 |
|
DNA Suspension Buffer |
Teknova |
T0223 |
|
RNAqueous kit |
Invitrogen/ThermoFisher |
AM1931 |
|
TaqMan gene expression assays not listed in Table 2 |
|||
CD6 |
Applied Biosystems/ThermoFisher |
Hs00198752_m1 |
|
TLR3 |
Applied Biosystems/ThermoFisher |
Hs1551078_m1 |
|
Biomark reagents |
|||
Control Line Fluid Kit |
Fluidigm |
89000021 |
|
TaqMan Universal PCR Mix |
Applied Biosystems/ThermoFisher |
4304437 |
|
Assay Loading Reagent |
Fluidigm |
85000736 |
|
Sample Loading Reagent |
Fluidigm |
85000735 |
|
Dynamic Array 96.96 (chip) |
Fluidigm |
BMK-M-96.96 |
|
FACS reagents |
|||
SPHERO COMPtrol Goat anti-mouse (lambda) |
Spherotech Inc. |
CMIgP-30-5H |
|
CompBeads Anti-Mouse Ig,k |
BD Biosciences |
51-90-9001229 |
|
5 ml Polystyrene tube with strainer cap |
FALCON |
352235 |
|
Aqua Live/Dead stain |
Invitrogen/ThermoFisher |
L34976 |
dilute 1:800 |
Mouse Anti-Human CD3 BV650 clone SP34-2 |
BD Biosciences |
563916 |
dilute 1:40 |
Mouse Anti-Human CD4 BV786 clone L200 |
BD Biosciences |
563914 |
dilute 1:20 |
Mouse Anti-Human CD8 BUV496 clone RPA-T8 |
BD Biosciences |
564804 |
dilute 1:10 |
Mouse Anti-Human CD28 BV711 clone CD28.2 |
Biolegend |
302948 |
dilute 1:20 |
Mouse Anti-Human CD95 BUV737 clone DX2 |
BD Biosciences |
564710 |
dilute 1:10 |
Mouse Anti-Human CD14 BV510 clone M5E2 |
Biolegend |
301842 |
dilute 1:83 |
Mouse Anti-Human CD16 BV510 clone 3G8 |
Biolegend |
302048 |
dilute 1:167 |
Mouse Anti-Human CD20 BV510 clone 2H7 |
Biolegend |
302340 |
dilute 1:37 |
Anti-CD38-R PE clone OKT10 |
NHP reagent recource |
N/A |
dilute 1:100 |
Mouse Anti-Human CD69 BUV395 clone FN50 |
BD Biosciences |
564364 |
dilute 1:10 |
Mouse Anti-Human HLA-DR APC-H7 clone G46-6 |
BD Biosciences |
561358 |
dilute 1:20 |
Mouse Anti-Human ICOS Alexa Fluor 700 clone C398.4A |
Biolegend |
313528 |
dilute 1:80 |
Instruments |
|||
BioPrptect Containment Enclosure |
Baker |
||
BD FACS Aria |
BD Biosciences |
||
ProtoFlex Dual 96-well PCR system |
Applied Biosystems/ThermoFisher |
4484076 |
|
Quant Studio 6 qPCR instrument |
Applied Biosystems/ThermoFisher |
4485694 |
|
IFC controller HX |
Fluidigm |
IFC-HX |
|
Biomark HD |
Fluidigm |
BMKHD-BMKHD |