Aqui, apresentamos um protocolo para gravar o cérebro e coração bio sinais nos ratos usando vídeo simultâneo, Eletroencefalografia (EEG) e eletrocardiograma (ECG). Descrevemos também métodos para analisar as gravações de EEG-ECG resultantes para convulsões, potência espectral de EEG, função cardíaca e variabilidade da frequência cardíaca.
Na epilepsia, convulsões podem evocar distúrbios de ritmo cardíaco, tais como alterações de frequência cardíaca, condução blocos, asystoles e arritmias, que potencialmente podem aumentar o risco de morte inesperada súbita em epilepsia (SUDEP). Eletroencefalografia (EEG) e eletrocardiograma (ECG) são ferramentas de diagnóstico clínicas utilizadas para monitorizar o cérebro anormal e ritmos cardíacos em pacientes. Aqui, uma técnica para simultaneamente gravar vídeo, EEG e ECG em ratos para medida de comportamento, cérebro e atividades cardíacas, respectivamente, é descrita. A técnica descrita neste documento utiliza um amarrados (i.e., com fio) configuração de gravação em que o eletrodo implantado na cabeça do rato é Hard-wired para o equipamento de gravação. Comparado a telemetria sem fio, sistemas de gravação, o arranjo amarrado possui diversas vantagens técnicas tais como um maior número possível de canais para gravação de EEG ou outros biopotentials; custos mais baixos de eletrodo; e maior frequência de largura de banda (ou seja, taxa de amostragem) de gravações. O básico desta técnica também pode ser facilmente modificado para acomodar gravando outros bio-sinais, tais como a eletromiografia (EMG) ou pletismografia para avaliação do músculo e atividade respiratória, respectivamente. Além de descrever como realizar as gravações de EEG-ECG, detalhamos também métodos para quantificar os dados resultantes para convulsões, EEG potência espectral, função cardíaca e variabilidade da frequência cardíaca, que demonstramos em um experimento de exemplo usando um mouse com epilepsia devido ao apagamento do gene Kcna1 . Vídeo-EEG-ECG, monitorização em modelos do rato de epilepsia ou outra doença neurológica fornece uma ferramenta poderosa para identificar a disfunção a nível do cérebro, coração ou as interações cérebro-coração.
Eletroencefalografia (EEG) e eletrocardiograma (ECG) são técnicas poderosas e amplamente utilizadas para a avaliação na vivo o cérebro e a função cardíaca, respectivamente. EEG é a gravação da atividade elétrica cerebral, anexando eletrodos para o couro cabeludo1. O sinal gravado com EEG invasivo representa flutuações de tensão decorrentes de Likert excitatórios e inibitórios potenciais pós-sinápticos gerados principalmente pelos neurônios piramidais corticais1,2. EEG é o teste de neurodiagnostic mais comuns de avaliação e gerenciamento de pacientes com epilepsia3,4. É especialmente útil quando crises epilépticas ocorrem sem manifestações comportamentais convulsivas evidentes, tais como crises de ausência ou não-convulsiva estado de mal epiléptico5,6. Inversamente, epilepsia não relacionados com as condições que levam a episódios convulsivos ou perda de consciência podem ser diagnosticadas como crises epilépticas sem monitoramento de vídeo-EEG7. Além de sua utilidade no campo da epilepsia, o EEG é também amplamente utilizado para detectar a atividade anormal do cérebro associada com distúrbios do sono, encefalopatias e distúrbios de memória, bem como para complementar a anestesia geral durante cirurgias2 , 8 , 9.
Em contraste com EEG, ECG (ou EKG como ele às vezes é abreviado) é a gravação da atividade elétrica do coração10. Geralmente são realizadas por ECGs, anexando os eletrodos para as extremidades dos membros e da parede torácica, que permite a detecção das alterações de tensão gerada pelo miocárdio durante cada ciclo cardíaco de contração e relaxamento de10,11. Os principais componentes de forma de onda de ECG de um ciclo cardíaco normal incluem a onda P, o complexo de QRS e a onda T, que corresponde à despolarização atrial, ventricular despolarização e repolarização ventricular, respectivamente,10, 11. monitorização de ECG é usada rotineiramente para identificar arritmias cardíacas e defeitos do sistema de condução cardíaca12. Entre os pacientes de epilepsia, a importância do uso de ECG para identificar arritmias potencialmente fatais é amplificada, já que eles são significativamente maior risco de ataque cardíaco súbito, bem como a morte inesperada súbita em epilepsia13, 14,15.
Além de suas aplicações clínicas, gravações de EEG e ECG tornaram-se uma ferramenta indispensável para a identificação de disfunção de cérebro e coração em modelos do rato da doença. Embora tradicionalmente estas gravações foram realizadas separadamente, aqui nós descrevemos uma técnica para gravar vídeo, EEG e ECG simultaneamente em ratos. O método de vídeo-EEG-ECG simultâneo detalhado aqui utiliza uma configuração de gravação amarrados em que o eletrodo implantado na cabeça do rato é Hard-wired para o equipamento de gravação. Historicamente, esta amarrado, ou com fio, configuração tem sido o padrão e método mais amplamente usado para gravações de EEG em ratos; no entanto, sistemas de telemetria de EEG sem fio também foram desenvolvidos recentemente e estão ganhando na popularidade,16.
Em comparação com sistemas de EEG sem fio, o arranjo amarrado possui várias vantagens técnicas que podem tornar preferível dependendo da aplicação desejada. Estas vantagens incluem um maior número de canais para gravação de EEG ou outros biopotentials; custos mais baixos de eletrodo; disponibilidade de eletrodo; menor susceptibilidade para sinalizar a perda; e maior largura de banda de frequência (i. e., taxa de amostragem) de gravações17. Feito corretamente, o método de gravação amarrados descrito aqui é capaz de fornecer alta qualidade, livre de artefato EEG e ECG dados simultaneamente, junto com o vídeo correspondente para acompanhamento comportamental. Este dados de EEG e ECG podem então ser extraídos para identificar neural, cardíaca ou anormalidades neurocardiac tais como convulsões, alterações no EEG de energia espectro, blocos de condução cardíaca (i. e., ignorada batidas do coração) e mudanças na variabilidade da frequência cardíaca. Para demonstrar a aplicação destes métodos quantitativos de EEG-ECG, apresentamos um experimento de exemplo usando um nocaute de Kcna1 (- / -) do mouse. Kcna1 ratos – / – faltam de voltagem-dependente Kv1.1 subunidades α e apresentam como consequência espontâneas convulsões, disfunção cardíaca e morte prematura, tornando-os um modelo ideal para avaliação simultânea de EEG-ECG de deletérios associados a epilepsia disfunção neurocardiac.
Para obter gravações de EEG-ECG de alta qualidade que estão livres de artefatos, devem ser tomadas todas as precauções para evitar a degradação ou afrouxamento do eletrodo implantado e fios. Como um implante de cabeça de EEG torna-se solto, os contatos de fio com o cérebro irão degradar levando a amplitudes de sinal diminuiu. Implantes soltos ou pobre fio contatos também podem causar distorção dos sinais elétricos, introdução de artefatos de movimento e ruído de fundo para as gravações. Para evitar pot…
The authors have nothing to disclose.
Este trabalho foi apoiado por cidadãos Unidos para pesquisa em epilepsia (número de concessão 35489); o National Institutes of Health (conceder números R01NS100954, R01NS099188); e um centro de Ciências da saúde de Universidade Louisiana estado Malcolm Feist Postdoctoral Fellowship.
VistaVision stereozoom dissecting microscope | VWR | ||
Dolan-Jenner MI-150 microscopy illuminator, with ring light | VWR | MI-150RL | |
CS Series scale | Ohaus | CS200 | for weighing animal |
T/Pump professional | Stryker | recirculating water heat pad system | |
Ideal Micro Drill | Roboz Surgical Instruments | RS-6300 | |
Ideal Micro Drill Burr Set | Cell Point Scientific | 60-1000 | only need the 0.8-mm size |
electric trimmer | Wahl | 9962 | mini clipper |
tabletop vise | Eclipse Tools | PD-372 | PD-372 Mini-tabletop suction vise |
fine scissors | Fine Science Tools | 14058-11 | ToughCut, Straight, Sharp/Sharp, 11.5 cm |
Crile-Wood needle holder | Fine Science Tools | 12003-15 | Straight, Serrated, 15 cm, with lock – For applying wound clips |
Dumont #7 forceps | Fine Science Tools | 11297-00 | Standard Tips, Curved, Dumostar, 11.5 cm |
Adson forceps | Fine Science Tools | 11006-12 | Serrated, Straight, 12 cm |
Olsen-Hegar needle holder with suture cutter | Fine Science Tools | 12002-12 | Straight, Serrated, 12 cm, with lock |
scalpel handle #3 | Fine Science Tools | 10003-12 | |
surgical blades #15 | Havel's | FHS15 | |
6-0 surgical suture | Unify | S-N618R13 | non-absorbable, monofilament, black |
gauze sponges | Coviden | 2346 | 12 ply, 7.6 cm x 7.6 cm |
cotton-tipped swabs | Constix | SC-9 | 15.2-cm total length |
super glue | Loctite | LOC1364076 | gel control |
Michel wound clips, 7.5mm | Kent Scientific | INS700750 | |
polycarboxylate dental cement kit | Prime-dent | 010-036 | Type 1 fine grain |
tuberculin syringe | BD | 309623 | |
polyethylene tubing | Intramedic | 427431 | PE160, 1.143 mm (ID) x 1.575 mm (OD) |
chlorhexidine | Sigma-Aldrich | C9394 | |
ethanol | Sigma-Aldrich | E7023-500ML | |
Puralube vet ointment | Dechra Veterinary Products | opthalamic eye ointment | |
mouse anesthetic cocktail | Ketamine (80 mg/kg), Xylazine (10 mg/kg), and Acepromazine (1 mg/kg) | ||
carprofen | Rimadyl (trade name) | ||
HydroGel | ClearH20 | 70-01-5022 | hydrating gel; 56-g cups |
Ponemah software | Data Sciences International | data acquisition and analysis software; version 5.2 or greater with Electrocardiogram Module | |
7700 Digital Signal conditioner | Data Sciences International | ||
12 Channel Isolated Bio-potential Pod | Data Sciences International | ||
fish tank | Topfin | for use as recording chamber; 20.8 gallon aquarium; 40.8 cm (L) X 21.3 cm (W) X 25.5 cm (H) | |
Digital Communication Module (DCOM) | Data Sciences International | 13-7715-70 | |
12 Channel Isolated Bio-potential Pod | Data Sciences International | 12-7770-BIO12 | |
serial link cable | Data Sciences International | J03557-20 | connects DCOM to bio-potential pod |
Acquisition Interface (ACQ-7700USB) | Data Sciences International | PNM-P3P-7002 | |
network video camera | Axis Communications | P1343, day/night capability | |
8-Port Gigabit Smart Switch | Cisco | SG200-08 | 8-port gigabit ethernet swith with 4 power over ethernet supported ports (Cisco Small Business 200 Series) |
10-pin male nanoconnector with guide post hole | Omnetics | NPS-10-WD-30.0-C-G | electrode for implantation on the mouse head |
10-socket female nanoconnector with guide post | Omnetics | NSS-10-WD-2.0-C-G | connector for electrode implant |
1.5-mm female touchproof connector cables | PlasticsOne | 441 | 1 signal, gold-plated; for connecting the wiring from the head-mount implant to the bio-potential pod |
soldering iron | Weller | WESD51 BUNDLE | digital soldering station |
solder | Bernzomatic | 327797 | lead free, silver bearing, acid flux core solder |
heat shrink tubing | URBEST | collection of tubing with 1.5- to 10-mm internal diameters | |
heat gun | Dewalt | D26960 | |
mounting tape (double-sided) | 3M Scotch | MMM114 | 114/DC Heavy Duty Mounting Tape, 2.54 cm x 1.27 m |
desktop computer | Dell | recommended minimum requirements: 3rd Gen Intel Core i7-3770 processor with HD4000 graphics; 4 GB RAM, 1 GB AMD Radeon HD 7570 video card; 1 TB hard drive; Windows 7 OS | |
permanent marker | Sharpie | 37001 | black color, ultra fine point |
toothpicks | for mixing and applying the polycarboxylate dental cement | ||
LabChart Pro software | ADInstruments | power spectrum software; version 8.1.3 or greater | |
Kubios HRV software | Univ. of Eastern Finland | HRV analysis software; version 2.2 | |
Notepad | Microsoft | simple text editor software |