Summary

脊髓损伤后下肢电刺激训练的模式

Published: February 01, 2018
doi:

Summary

脊髓损伤是一种创伤性的疾病, 可能导致慢性次生代谢紊乱的风险增高。在这里, 我们提出了一个协议使用表面神经肌肉电刺激-阻力训练结合功能性电刺激-下肢循环作为一种策略, 以改善这些医疗问题的一些。

Abstract

骨骼肌萎缩、肥胖增加和体力活动减少是脊髓损伤后观察到的重要改变, 与许多代谢的健康后果有关。这些变化有可能增加发展慢性二级疾病的风险, 并影响 SCI 人的生活质量. 表面神经肌肉电刺激诱发抗性训练 (NMES) 是一种策略减轻骨骼肌萎缩的过程, 减少异位肥胖, 提高胰岛素敏感性, 增强线粒体能力。然而, NMES 仅限于单个肌肉群。累及下肢多个肌肉群, 可以最大限度地提高训练的健康效益。功能性电刺激-下肢循环 (非斯) 允许激活6肌肉群, 这可能会唤起更大的新陈代谢和心血管适应。对刺激参数的适当了解是提高电刺激训练效果的关键. 在康复过程中采用长期使用 NMES 的策略可以保持肌肉骨骼系统, 是临床试验的先决条件, 旨在恢复受伤后步行。目前的手稿提出了一个组合的协议使用 NMES 前的非斯-RT。我们推测, 在骑车前12周的肌肉会有能力产生更大的能量, 循环抵抗更高的阻力, 并导致更多的人适应 SCI。

Introduction

据估计, 大约有28.2万人在美国目前生活在脊髓损伤 (SCI)1。平均每年有大约1.7万新的案件, 主要由机动车车祸、暴力行为和体育活动造成,1。SCI 导致部分或全部的神经传导中断, 在伤害水平的范围内和低于2, 导致亚损感觉和/或马达损耗。损伤后, 骨骼肌肉的活动在损伤水平之下大大减少, 导致精益质量的迅速下降和伴随的异位脂肪组织的浸润, 或肌肉脂肪 (IMF)。研究表明, 下肢骨骼肌在受伤后的头几周内会出现明显的萎缩, 在第一年的最后一个3,4。一旦6周后受伤, 与年龄和体重匹配的残疾身体的控制, 完全 SCI 的个人经历了18-46% 下降的亚损肌肉大小。24周后受伤, 骨骼肌横断面面积 (CSA) 可低至30至 50%3。Gorgey 和达德利表明, 骨骼肌继续萎缩43% 的原始大小4.5 月后受伤, 并指出三倍的货币基金组织的人与残疾健全的控制相比,4。新陈代谢活性精益质量的损失导致基础代谢率的降低 (BMR)2,6, 该值占总每日能源支出的∼65-70%;这样减少在 BMR 可能导致有害能量失衡和增加肥胖在伤害以后2,7,8,910,18。肥胖症与慢性继发性疾病的发展有关, 包括高血压、II 型糖尿病 (T2DM) 和心血管病2,10,11,12,13,14,15,16,17,18. 此外, SCI 的人可能患有营养不良和依赖高脂肪饮食。膳食脂肪摄入量可能占29到34% 的脂肪的人与 sci, 这很可能是一个因素解释日益增加的肥胖和在 sci 人口中不断上升的流行率12,13

神经肌肉电刺激诱发抗性训练 (NMES) 是为了诱导瘫痪骨骼肌肥大而设计的19,20,21,22,23, 24。在每周两次的 NMES 十二周后, 整个大腿、膝伸肌和膝屈肌群的骨骼肌 CSA 分别增加了28%、35% 和 16%, 各22。达德利et al。显示, 8 周两次-每周 NMES-RT 恢复膝伸肌大小, 以75% 的原始大小在六周后受伤的19。此外, 茉莉et al。使用相同的协议, 并注意到35% 和39% 增加的右和左直肌肌肉后12周 NMES RT20

功能性电刺激-下肢循环 (非斯) 是一种常见的康复技术, 用于锻炼下肢肌肉组后 SCI25,26。不同于 NMES, 非斯依赖于刺激6肌肉群, 这可能导致增加肥大和改善在代谢配置文件10,25,26,27, 28. Dolbow et al。发现, 在 SCI27的个体中, 总的身体精益质量在56月后增加了18.5%。在十二月的三次每周的非斯, 一个60岁的女性截瘫经历了7.7% 的增加总身体精益质量和4.1% 增加腿部瘦肉质量28。在 SCI102526之后, 功能性电刺激 (非斯) 的常规使用与代谢条件的危险因素的改善有关。

理想的电刺激训练的候选人将有电机完全或不完全的伤害, 与完整的外周运动神经元和有限的下肢感觉。目前的手稿, 描述了一个组合的方法, 使用 NMES RT 和非斯, 旨在改善的结果, 电刺激训练的人与慢性 SCI。NMES 的过程中使用踝关节重量将概述, 同时突出的关键步骤的协议和整体利益的干预提供给人慢性 SCI。第二个目的是描述代谢的过程, 旨在最大限度地提高干预的整体效果。以前的工作证实了我们的理性, 联合训练协议可能唤起更大的结果后24周的电刺激训练20,21,22,23,24 ,25,26,31,32,33,34,35,36

Protocol

本手稿中描述的培训协议是用 clinicaltrials.gov 标识符 (NCT01652040) 注册的。该训练计划涉及踝关节重量和 NMES。表 2中列出了所有必需的设备。研究协议和知情同意由里士满 VAMC 机构审查委员会 (irb) 和弗吉尼亚联邦大学 (VCU) irb 审查和批准。所有研究规程在开始试验之前详细地被解释了对每个参加者。 1. 参加者的征聘 对潜在参与者进行预筛选评估。 详?…

Representative Results

22参加者的踝关节重量逐渐增加, 超过16周的 NMES (图 6a)。参与者举起的平均重量是19.6 ±6.5 磅 (右腿) 和20±6磅 (左腿) [8-24 磅]。在整个试验中, 右腿和左脚的电流振幅波动 (图 6b)。 一个人的进展与电机完成 SCI 在12周的非斯培训后, 在表 1中突出显示。结果表明, 在12周的训?…

Discussion

目前的研究展示了两种不同的电刺激模式。一个范例的重点是实施逐步加载到训练有素的肌肉, 以唤起骨骼肌肥大和其他范例主要是为了提高有氧能力的心脏代谢表现。这项研究确保比较两种范式, 并强调各自的利弊。

NMES-RT 被证明是有效的恢复肌肉大小和唤起肥厚的人急性和慢性 SCI19,20,21</su…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

我们要感谢那些花时间和精力参加以往研究的与会者。我们要感谢亨特福尔摩斯研究所和脊髓损伤服务和疾病提供环境进行临床人体研究试验。阿什拉夫·杰汉吉尔·卡齐 s Gorgey 目前由退伍军人事务部、退伍军人健康管理局、康复研究和发展处 (B7867-W) 和国防部 CDRMP (W81XWH-14-SCIRP-CTA) 提供支持。

Materials

adhesive carbon electrodes (2 of each) Physio Tech (Richmond, VA, USA 23233) PT3X5
PALS3X4
E7300
7.5' x 12.7'
7.5' x 10'
5' x 9'
TheraTouch 4.7 stimulator Richmar (Chattanooga, TN, USA 37406) 400-082 41.28' x 39.37' x 17.78' (8.91 kg)
power: 110 VAC at 60 Hz / 220VAC at 50 Hz
power consumption: 110 Watts
Red & White Lead Cords (2) Richmar (Chattanooga, TN, USA 37406) A1717 2.0 m
RT300-SL FES Ergometer Restorative Therapies, Inc. (Baltimore, MD, USA 21231) RT300-SL 80' x 49' x 92-103' (39 kg)
16 channel
speed: 15 – 55 rev/min
elastic NuStim wraps (2) Fabrifoam (Exton, PA, USA 19341) PP108666 36"
wooden wheelchair break (2) n/a n/a n/a
pillow/cushion n/a n/a standard
ankle weights n/a n/a 2-26 lb.

Riferimenti

  1. National Cord Injury Statistical Center. . Facts and Figures at a Glance. , (2016).
  2. Gorgey, A., Dolbow, D., Dolbow, J., Khalil, R., Castillo, C., Gater, D. Effects of spinal cord injury on body composition and metabolic profile-Part I. J Spinal Cord Med. 37 (6), 693-702 (2014).
  3. Castro, M., Apple, D., Hillegass, E., Dudley, G. Influence of complete spinal cord injury on skeletal muscle cross-sectional area within the first 6 months of injury. Eur J Appl Physiol O. 80 (4), 373-378 (1999).
  4. Gorgey, A., Dudley, G. Skeletal muscle atrophy and increased intramuscular fat after incomplete spinal cord injury. Spinal Cord. 45 (4), 304-309 (2007).
  5. Elder, C., Apple, D., Bickel, C., Meyer, R., Dudley, G. Intramuscular fat and glucose tolerance after spinal cord injury – a cross-sectional study. Spinal Cord. 42 (12), 711-716 (2004).
  6. Monroe, M., Tataranni, P., Pratley, R., Manore, M., Skinner, J., Ravussin, E. Lower daily energy expenditure as measured by respiratory chamber in subjects with spinal cord injury compared with control subjects. Am J Clin Nutr. 68 (6), 1223-1227 (1998).
  7. Buchholz, A., Pencharz, P. Energy expenditure in chronic spinal cord injury. Curr Opin Clin Nutr. 7 (6), 635-639 (2004).
  8. Buchholz, A., McGillivray, C., Pencharz, P. Physical activity levels are low in free-living adults with chronic paraplegia. Obes Res. 11 (4), 563-570 (2003).
  9. Olle, M., Pivarnik, J., Klish, W., Morrow, J. Body composition of sedentary and physically active spinal cord injured individuals estimated from total body electoral conductivity. Arch Phys Med Rehab. 74 (7), 706-710 (1993).
  10. Mollinger, L., et al. Daily energy expenditure and basal metabolic rates of patients with spinal cord injury. Arch Phys Med Regab. 66 (7), 420-426 (1985).
  11. Gater, D. Obesity after spinal cord injury. Phys Med Rehabil Cli. 18 (2), 333-351 (2007).
  12. Khalil, R., Gorgey, A., Janisko, M., Dolbow, D., Moore, J., Gater, D. The role of nutrition in health status after spinal cord injury. Aging Dis. 4 (1), 14-22 (2013).
  13. Gorgey, A., et al. Frequency of Dietary Recalls, Nutritional Assessment, and Body Composition Assessment in Men with Chronic Spinal Cord Injury. Arch Phys Med Rehab. 96 (9), 1646-1653 (2015).
  14. Bauman, W., Spungen, A. Carbohydrate and lipid metabolism in chronic spinal cord injury. J Spinal Cord Med. 24 (4), 266-277 (2001).
  15. Bauman, W., Spungen, A. Disorders of carbohydrate and lipid metabolism in veterans with paraplegia or quadriplegia: a model of premature aging. Metabolism. 43 (6), 749-756 (1994).
  16. Bauman, W., Spungen, A., Zhong, Y., Rothstein, J., Petry, C., Gordon, S. Depressed serum high density lipoprotein cholesterol levels in veterans with spinal cord injury. Paraplegia. 30 (10), 697-703 (1992).
  17. Nash, M., Mendez, A. A guideline-driven assessment of need for cardiovascular disease risk intervention in persons with chronic paraplegia. Arch Phys Med Rehab. 88 (6), 751-757 (2007).
  18. Aksnes, A., Hjeltnes, N., Wahlstrom, E., Katz, A., Zierath, J., Wallberg-Henriksson, H. Intact glucose transport in morphologically altered denervated skeletal muscle from quadriplegic patients. Am J Physiol. 271 (3), E593-E600 (1996).
  19. Dudley, G., Castro, M., Rogers, S., Apple, D. A simple means of increasing muscle size after spinal cord injury: a pilot study. Eur J Appl Physiol O. 80 (4), 394-396 (1999).
  20. Mahoney, E., et al. Changes in skeletal muscle size and glucose tolerance with electrically stimulated resistance training in subjects with chronic spinal cord injury. Arch Phys Med Rehab. 86 (7), 1502-1504 (2005).
  21. Gorgey, A., Shepherd, C. Skeletal muscle hypertrophy and decreased intramuscular fat after unilateral resistance training in spinal cord injury: case report. J Spinal Cord Med. 33 (1), 90-95 (2010).
  22. Gorgey, A., Mather, K., Cupp, H., Gater, D. Effects of resistance training on adiposity and metabolism after spinal cord injury. Med Sci Sport Exer. 44 (1), 165-174 (2012).
  23. Ryan, T., Brizendine, J., Backus, D., McCully, K. Electrically induced resistance training in individuals with motor complete spinal cord injury. Arch Phys Med Rehab. 94 (11), 2166-2173 (2013).
  24. Gorgey, A., et al. Feasibility Pilot using Telehealth Video-Conference Monitoring of Home-Based NMES Resistance Training in Persons with Spinal Cord Injury. Spinal Cord Ser Cases. 3 (17039), (2017).
  25. Gater, D., Dolbow, D., Tsui, B., Gorgey, A. Functional electrical stimulation therapies after spinal cord injury. NeuroRehabilitation. 28 (3), 231-248 (2011).
  26. Gorgey, A., Dolbow, D., Dolbow, J., Khalil, R., Gater, D. The effects of electrical stimulation on body composition and metabolic profile after spinal cord injury – Part II. J Spinal Cord Med. 38 (1), 23-37 (2015).
  27. Dolbow, D., Gorgey, A., Khalil, R., Gater, D. Effects of a fifty-six month electrical stimulation cycling program after tetraplegia: case report. J Spinal Cord Med. 40 (4), 485-488 (2016).
  28. Dolbow, D., Gorgey, A., Gater, D., Moore, J. Body composition changes after 12 months of FES cycling: case report of a 60-year-old female with paraplegia. Spinal Cord. 1 (S3-S4), (2014).
  29. Gorgey, A., Cho, G., Dolbow, D., Gater, D. Differences in current amplitude evoking leg extension in individuals with spinal cord injury. NeuroRehabilitation. 33 (1), 161-170 (2013).
  30. Wade, R., Gorgey, A. Skeletal muscle conditioning may be an effective rehabilitation intervention preceding functional electrical stimulation cycling. Neural Regen Res. 11 (8), 1232-1233 (2016).
  31. Mohr, T., Dela, F., Handberg, A., Biering-Sørensen, F., Galbo, H., Kjaer, M. Insulin action and long-term electrically induced training in individuals with spinal cord injuries. Med Sci Sports Exer. 33 (8), 1247-1252 (2001).
  32. Jeon, J., et al. Improved glucose tolerance and insulin sensitivity after electrical stimulation-assisted cycling in people with spinal cord injury. Spinal Cord. 40 (3), 110-117 (2002).
  33. Kjaer, M., et al. Fatty acid kinetics and carbohydrate metabolism during electrical exercise in spinal cord-injured humans. Am J Physiol-Reg I. 281 (5), R1492-R1498 (2001).
  34. Hettinga, D., Andrews, B. Oxygen consumption during functional electrical stimulation assisted exercise in persons with spinal cord injury: implications for fitness and health. Sports Med. 38 (10), 825-838 (2008).
  35. Yarar-Fisher, C., Bickel, C., Windham, S., McLain, A., Bamman, M. Skeletal muscle signaling associated with impaired glucose tolerance in spinal cord-injured men and the effects of contractile activity. J Appl Physiol. 115 (5), 756-764 (1985).
  36. Yarar-Fisher, C., Bickel, C., Kelly, N., Windham, S., Mclain, A., Bamman, M. Mechanosensitivity may be enhanced in skeletal muscles of spinal cord-injured versus ablebodied men. Muscle Nerve. 50 (4), 599-601 (2014).
  37. Gorgey, A., Mahoney, E., Kendall, T., Dudley, G. Effects of neuromuscular electrical stimulation parameters on specific tension. Eur J Appl Physiol. 97 (6), 737-744 (2006).
  38. Gorgey, A., Black, C., Elder, C., Dudley, G. Effects of electrical stimulation parameters on fatigue in skeletal muscle. J Orthop Sports Phys. 39 (9), 84-92 (2009).
  39. Gorgey, A., et al. Effects of Testosterone and Evoked Resistance Exercise after Spinal Cord Injury (TEREX-SCI): study protocol for a randomised controlled trial. BMJ Open. 7 (4), (2017).
  40. Nelson, M., et al. Metabolic syndrome in adolescents with spinal cord dysfunction. J Spinal Cord Med. 30 (s1), 127-139 (2007).
  41. Ashley, E., et al. Evidence of autonomic dysreflexia during functional electrical stimulation in individuals with spinal cord injuries. Paraplegia. 31 (9), 593-605 (1993).
  42. Hasnan, N., et al. Exercise responses during functional electrical stimulation cycling in individuals with spinal cord injury. Med Sci Sports Exer. 45 (6), 1131-1138 (2013).
  43. Fornusek, C., Davis, G., Russold, M. Pilot study of the effect of low-cadence functional electrical stimulation cycling after spinal cord injury on thigh girth and strength. Arch Phys Med Rehab. 94 (5), 990-993 (2013).
  44. Gorgey, A., Poarch, H., Dolbow, D., Castillo, T., Gater, D. The Impact of adjusting pulse durations of functional electrical stimulation cycling on energy expenditure and fatigue after spinal cord injury. J Rehabil Res Dev. 51 (9), 1455-1468 (2014).
  45. Ryan, A., Ivey, F., Prior, S., Li, G., Hafer-Macko, C. Skeletal muscle hypertrophy and muscle myostatin reduction after resistive training in stroke survivors. Stroke. 42 (2), 416-420 (2011).
  46. Sabatier, M., et al. Electrically stimulated resistance training in SCI individuals increases muscle fatigue resistance but not femoral artery size or blood flow. Spinal Cord. 44 (4), 227-233 (2006).
  47. Johnston, T., et al. Musculoskeletal Effects of 2 Functional Electrical Stimulation Cycling Paradigms Conducted at Different Cadences for People With Spinal Cord Injury: A Pilot Study. Arch Phys Med Rehab. 97 (9), 1413-1422 (2016).
  48. Gorgey, A., Cho, G., Dolbow, D., Gater, D. Differences in current amplitude evoking leg extension in individuals with spinal cord injury. NeuroRehabilitation. 33 (1), 161-170 (2013).
  49. Gorgey, A., Martin, H., Metz, A., Khalil, R., Dolbow, D., Gater, D. Longitudinal changes in body composition and metabolic profile between exercise clinical trials in men with chronic spinal cord injury. J Spinal Cord Med. 39 (6), 699-712 (2016).

Play Video

Citazione di questo articolo
Gorgey, A. S., Khalil, R. E., Lester, R. M., Dudley, G. A., Gater, D. R. Paradigms of Lower Extremity Electrical Stimulation Training After Spinal Cord Injury. J. Vis. Exp. (132), e57000, doi:10.3791/57000 (2018).

View Video