Cerebral organoids represent a new model system to investigate early human brain development in vitro. This article provides the detailed methodology to efficiently generate homogeneous dorsal forebrain-type organoids from human induced pluripotent stem cells including critical characterization and validation steps.
The human cortex is highly expanded and exhibits a complex structure with specific functional areas, providing higher brain function, such as cognition. Efforts to study human cerebral cortex development have been limited by the availability of model systems. Translating results from rodent studies to the human system is restricted by species differences and studies on human primary tissues are hampered by a lack of tissue availability as well as ethical concerns. Recent development in human pluripotent stem cell (PSC) technology include the generation of three-dimensional (3D) self-organizing organotypic culture systems, which mimic to a certain extent human-specific brain development in vitro. Currently, various protocols are available for the generation of either whole brain or brain-region specific organoids. The method for the generation of homogeneous and reproducible forebrain-type organoids from induced PSC (iPSC), which we previously established and describe here, combines the intrinsic ability of PSC to self-organize with guided differentiation towards the anterior neuroectodermal lineage and matrix embedding to support the formation of a continuous neuroepithelium. More specifically, this protocol involves: (1) the generation of iPSC aggregates, including the conversion of iPSC colonies to a confluent monolayer culture; (2) the induction of anterior neuroectoderm; (3) the embedding of neuroectodermal aggregates in a matrix scaffold; (4) the generation of forebrain-type organoids from neuroectodermal aggregates; and (5) the fixation and validation of forebrain-type organoids. As such, this protocol provides an easily applicable system for the generation of standardized and reproducible iPSC-derived cortical tissue structures in vitro.
The human brain is clearly one of the most complex organs and is responsible for all human intellectual abilities. Thus, a deeper understanding of human-specific brain development is a critical prerequisite for the understanding of human cognitive abilities. Traditionally, transgenic animals served as model organisms to study brain development. These models provided fundamental insight into the principles of brain development. We now know that a common feature of brain development in all mammals is a precise choreography of progenitor proliferation, neurogenesis, and neuronal migration. There are, however, significant structural differences between the brains of model organisms, such as rodents and humans, especially in the neocortex. The primary mechanisms that have been proposed to contribute to primate cortical evolution are an increased proliferation of stem and progenitor cells as well as the generation of outer radial glia cells (oRGCs), which are only very rarely found in rodents1,2,3.
Methods to model human cerebral cortex development include the generation of PSC-derived telencephalic progenitor cells and cerebral cortex projection neurons as monolayer cultures. These standardized differentiation protocols replay certain aspects of human cortical development such as the stereotypical temporal order of cortical neurogenesis4. They, however, fall short when it comes to the recapitulation of developmental processes of organogenesis such as spatial patterning and morphogenesis. More recent developments in stem cell biology led to the establishment of 3D organoid cultures from PSCs, which are revolutionizing the research of in vitro human organogenesis. Utilizing the capacity of PSCs to self-organize into organotypic structures, various organoids, which reflect key structural and functional properties of organs including those of kidney, gut, the eye, and the brain have been established5. Such organoids contain multiple organ-specific cellular subtypes, which group together and spatially organize very similar to the developing organs in vivo5,6. In addition, cell composition, lineage relationship, and gene network studies using single-cell RNA sequencing revealed that human cerebral organoids faithfully recapitulate major aspects of human fetal neocortex development such as gene expression programs7,8. One major drawback, which prevented their broad application so far, was, however, the large batch-to-batch variations and organoid-to-organoid heterogeneity9.
Here, we provide a detailed protocol for a simple and standardized forebrain-type organoid culture system. The key feature of this system is that it efficiently and reproducibly generates PSC-derived organoids of almost exclusive dorsal telencephalic identity. The protocol is based on the methods used in our recent Cell Reports paper10. It combines the self-organization capacity of iPSCs with selective induction of cortical neuroepithelium and can robustly generate homogeneous cultures of early dorsal telencephalic tissue within 3 weeks. The protocol builds on the previously reported SMAD signaling and Wnt inhibition strategy that guides the differentiation of PSC towards the anterior neuroectodermal lineage11,12 in combination with matrix embedding, which promotes the formation of large and continuous neuroepithelial structures13. We have successfully used the described method on various iPSC lines, with several clones per individual. We showed that this system is suitable for downstream applications in which reproducibility and homogeneity are of major importance such as disease modeling. When applying the protocol to iPSCs derived from patients suffering from a severe cortical malformation, we were able to recapitulate pathological hallmarks of the disease in vitro and to identify new molecular mechanisms leading to the phenotypic changes10. We suggest that the described organoid protocol can be utilized to close the gap between reductionist PSC-derived cortical monolayer cultures and in vivo studies, and that it represents a reliable and stable cell-based model system to simulate early human cortical development in health and disease outside the human body.
1. Generation of iPSC Aggregates
2. Induction of Anterior Neuroectoderm
3. Embedding of Neuroectodermal Aggregates in a Matrix Scaffold
4. Generation of Forebrain-type Organoids from Neuroectodermal Aggregates
5. Fixation and Validation of Forebrain-type Organoids
The standardized forebrain-type organoid protocol described here typically generates highly homogenous organoid cultures of almost exclusively dorsal cortical identity from human iPSCs within 20 days of cultivation (protocol outlined in Figure 1A). It is recommended to perform several quality control steps during the time course of the protocol, defined here as: 'go' (continue the differentiation process) and 'no-go' (suboptimal cultures, it is recommended to terminate the batch) (Figure 1). It is also advisable to document each quality control step well by taking images and notes.
The first critical step in generating forebrain-type organoids is to start with high-quality iPSC cultures. It is important that iPSCs do not contain larger fractions of differentiated cells. Only use iPSC cultures that present as a homogeneous monolayer of undifferentiated cells at the starting population (Figures 1B, C). In addition, it is crucial to start with the given cell number for iPSC aggregation. The first detailed inspection of the iPSC aggregates should be performed on day 2. At this stage, the aggregates should have formed compact cell buds with smooth edges ('go') whereas irregular appearing aggregates or aggregates with cavities should be discarded ('no-go') (Figures 1D, E). The next quality control step should be performed at day 10 of the protocol. At this time point, the cell aggregates should show smooth and optically translucent tissue on the outer surface representing induction of neuroectoderm ('go') whereas the absence of such tissue indicates suboptimal neural induction ('no-go') (Figures 1F, G). Only those aggregates that exhibit a translucent surface (Figure 1F) should be embedded into BME matrix. Once embedded, the cortical organoids will develop continuous neuroepithelial loop-like structures, which will expand quickly. Analyze the efficiency of the cortical induction at day 15 and day 20 by investigating whether the organoids have developed polarized neural ectoderm as demonstrated in Figure 1H, J ('go'). In the case that organoids have not developed such neuroepithelial buds ('no-go' as illustrated in Figure 1I, K), critically revise the performed quality control steps for troubleshooting. When tightly following the protocol, highly standardized organoid batches will be generated (Figures 2A, B), which will show ≥ 90% homogeneity in polarized neural ectoderm formation within and across batches (Figure 2C). A common mistake leading to variable efficiency of polarized neural ectoderm formation is to increase the starting cell number for iPSC aggregation, or to start with low-quality iPSC cultures such as mycoplasma contaminated cultures or cultures that contain differentiated cells.
A detailed validation of the dorsal telencephalic identity of the generated organoids should be performed at day 20. To that end, 3 organoids should be fixed and used for immunofluorescence analyses. Stratified neuroepithelial loops (Figure 3A) express the neural stem cell marker Sox2 (Figure 3B, D), the forebrain markers Pax6 and Otx2 (Figures 3C, E), and the dorsal cortical marker Emx1 (Figure 3F). These cortical loops are further characterized by an apical localization of N-cadherin and ZO-1 (Figures 3G, H), ventricular zone radial glia cell (vRGC)-derived microtubule, which spans from the apical to the basal side of the structures (Figure 3I), and apical located dividing cells that stain positive for phosphorylated vimentin (p-Vimentin, Figure 3J). Cell death might be present inside the organoid structures. Central apoptosis is normal and does not affect the development of cortical tissue. Additionally, 3 organoids should be used to assess the homogeneity of the protocol by gene expression analyses. Forebrain-type organoids show expression of the dorsal forebrain markers (FoxG1, Otx2, Emx1), while expression of the midbrain (FoxA2, Pax5) and the hindbrain (HoxB2, HoxA4, HoxB4, HoxB6) markers is not detectable (Figure 3K).
Batches of quality-controlled organoids can be used for various applications like the analyses of the division plane of apical radial glial cells. To that end, we suggest performing double staining using antibodies against p-Vimentin and Tpx2 (Figure 3J). P-Vimentin is phosphorylated by CDK1 during mitosis and is located in the nucleus, thus marking all nuclei in the mitotic phase16. Tpx2 is a microtubule associated protein that can visualize the mitotic spindle and the apical processes during interkinetic nuclear migration17,18. Using these markers, three aspects of vRGC division can in principle be analyzed: (I) whether cell division takes place at the apical side, (II) whether the division plane is aligned vertical (indicating symmetric cell division), horizontal, or oblique (indicating asymmetric cell division) to the apical surface, and (III) whether microtubule organizing centers are formed normally.
Organoids can be also further differentiated into more complex organized and stratified cortical tissue structures. Cortical structures within day 35 ± 2 organoids are composed of a ventricular zone (VZ)-, an inner and outer subventricular zone (SVZ), as well as a cortical plate (CP)-like area. Within the VZ and the inner and outer SVZ, vRGCs, intermediate progenitors (IPs), and cells reminiscent of oRGCs can be identified. In addition, the initial formation of a layered cortex can be observed in the CP-like area with deep cortical neurons expressing Tbr1 and Ctip2 inside and upper cortical neurons expressing Satb2, as well as Reelin-expressing cells in the outer regions10.
Figure 1: Schematic overview of the organoid protocol and illustration of 'go' and 'no-go' criteria. (A) Schematic overview of the protocol. CI medium: cortical induction medium; CD: cortical differentiation medium. (B–C) Image of an optimal 90% confluent iPSC monolayer culture (B) and a non-suitable iPSC culture exhibiting differentiation (C). (D–E) An iPSC aggregate optimal in size, cell density, and surface appearance (D) and two 'no-go' cell aggregates exhibiting either cell spares cavities (E, upper aggregate) or irregular edges (E, lower aggregate) two days following cell aggregation. (F–G) Cell aggregates exhibiting translucent and smooth edges (F) and cell aggregates lacking optical clearing (G). The yellow line is visualizing the area of interest. (H–K) An optimal organoid with continuous neuroepithelial loops (H, J) and an organoid that failed to develop radially organized neuroectoderm (I, K) imaged at day 15 and day 20, respectively. Scale bars, B-C 500 µm; D-K 200 µm. Please click here to view a larger version of this figure.
Figure 2: Homogeneity and reproducibility of the forebrain-type organoid protocol. (A–B) Representative bright-field images of organoids from one batch at day 15 (A) and day 26 (B). (C) Quantitative analyses of organoids at day 20. Organoids which display at the outer surface a neuroepithelium, recognizable in bright-field as optically clear superficial tissue with a clear border and evidence of radial cellular architecture were quantified (n = 3 per iPSC line with at least 16 organoids per experiment). Scale bars, A-B: 500 µm. Error bars ± SD. Please click here to view a larger version of this figure.
Figure 3: Validation of forebrain-type organoids at day 20. (A–J) Immunocytochemical characterization of organoids. Organoids organize in multiple neuroepithelial loops (A, counterstained with DAPI). Stratified organized cells within the neuroepithelial loops express the neural stem cell marker Sox2 (B, D), the forebrain markers Pax6 (C, D) and Otx2 (E), as well as the dorsal forebrain marker Emx1 (F). Cortical loop structures exhibited a fine adherent junction belt at the most apical side with the accumulation of N-cadherin (G) and zona occludens protein 1 (ZO-1; H). Ventricular RGCs' microtubule networks (stained by acetylated α-tubulin, Ac-Tub) extend from the apical to the basal side of the loop structures (I). Proliferating cells expressing p-vimentin (p-Vim) are located at the apical surface. Mitotic spindles are stained by Tpx2. Representative higher magnification image of a vertical and a horizontal division plane are shown on the right (J). (K) RT-PCR analysis for the region-specific transcription factors at day 20 of two independent sets of organoids derived from 2 different iPSC lines. FB: fetal brain control; AB: adult brain control. Scale bars, A-D 200 µm; E-I 10 µm. Please click here to view a larger version of this figure.
Epitope | Dilution |
Sox2 | 1 – 300 |
Pax6 | 1 – 500 |
Otx2 | 1 – 500 |
Emx1 | 1 – 50 |
N-cadherin | 1 – 500 |
ZO-1 | 1 – 100 |
P-Vimentin | 1 – 1000 |
Tpx2 | 1 – 500 |
Acetylated α-tubulin | 1 – 500 |
Alexa488 anti ms | 1 – 1000 |
Alexa488 anti rb | 1 – 1000 |
Alexa555 anti ms | 1 – 1000 |
Alexa555 anti rb | 1 – 1000 |
Table 1: Antibodies for quality control of organoids at day 20.
Primer | Sequence |
Otx2 forward | tgcaggggttcttctgtgat |
Otx2 reverse | agggtcagagcaattgacca |
FoxG1 forward | ccctcccatttctgtacgttt |
FoxG1 reverse | ctggcggctcttagagat |
Emx1 forward | agacgcaggtgaaggtgtgg |
Emx1 reverse | caggcaggcaggctctcc |
FoxA2 forward | ccaccaccaaccccacaaaatg |
FoxA2 reverse | tgcaacaccgtctccccaaagt |
Pax5 forward | aggatgccgctgatggagtac |
Pax5 reverse | tggaggagtgaatcagcttgg |
HoxB2 forward | tttagccgttcgcttagagg |
HoxB2 reverse | cggatagctggagacaggag |
HoxA4 forward | ttcagcaaaatgccctctct |
HoxA4 reverse | taggccagctccacagttct |
HoxB4 forward | acacccgctaacaaatgagg |
HoxB4 reverse | gcacgaaagatgagggagag |
HoxB6 forward | gaactgaggagcggactcac |
HoxB6 reverse | ctgggatcagggagtcttca |
18s forward | ttccttggaccggcgcaag |
18s reverse | gccgcatcgccggtcgg |
Table 2: Primer and primer sequences for gene expression profile.
Brain organoids represent a powerful tool for studying human brain development in vitro as they provide the relevant species background and the complex 3D arrangement of cells in a tissue context. With that, they bridge the gap between non-human animal models and reductionist human two-dimensional monolayer cell culture techniques. Their applications are, however, hampered by a lack of reproducibility9. We have developed a forebrain-type organoid protocol, which overcomes the large sample-to-sample variability by combining the self-organizing capacity of iPSC with their amenability to patterning factors. Specifically, iPSCs were aggregated to promote self-organization and subsequently inhibit TGF-ß/SMAD signaling to promote dorsal cortex differentiation by exposing the cultures to a BMP (LDN-193189) and a TGF-β type I receptor inhibitor (A83-01). Additionally, a compound inhibiting the Wnt pathway (IWR) to prevent posteriorization was applied. In contrast to 'intrinsic' cerebral organoid protocols19, which are based on self-assembly without external control giving rise to rather heterogeneous brain organoids and exhibiting large batch variations (measured by the efficiencies of polarized neural ectoderm formation15), the protocol described here reproducibly generates homogeneous forebrain-specific organoids from human iPSCs.
These forebrain-type organoids can be used for a variety of applications such as neurodevelopmental studies, evolutionary studies including gene function studies, disease modeling and, potentially, drug testing and therapeutic purposes. The protocol is, however, most suitable to examine early aspects of human cortical development. We have for example used the forebrain-type organoids to examine human-specific aspects of vRGC behavior. More specifically, pathophysiological changes associated with a severe form of lissencephaly, a human cortical malformation characterized by a near absence of cortical folding, was addressed. Only certain aspects of this disease can be modeled in mice as the mouse brain is naturally lissencephalic. When applying the organoid system to lissencephaly patient-derived iPSCs, we could reliably recapitulate human-specific aspects of the disease and identify underlying mechanisms. More specifically, we could demonstrate that patient-derived organoids show a significant reduction in size caused by a switch from symmetric to asymmetric cell division of vRGCs. This switch was associated with alterations in the organization of vRGCs' microtubule network, a disruption of the architecture of the VZ niche and altered expression of cell adhesion molecules, leading to an impaired activation of the N-cadherin/β-catenin signaling axis10. Of note: β-catenin-dependent regulation of vRGC division modes was suggested to be human-specific as overexpression of β-catenin in mice leads to tangential cortex expansion and subsequently cortical folding20. Thus, our data highlight that the forebrain-type organoid system represents a promising tool to study in a quantifiable manner the human-specific aspects of early cortical development in vitro.
A major challenge for the future is to maintain the homogeneity of the organoids across extended time periods in order to achieve more mature neuronal phenotypes. This might be realized by one or more of the following: culturing the organoids in a bioreactor system14, applying floating scaffolds15, supplementing the differentiation medium with neural growth, or neuronal survival factors. Finally, a controlled increase in brain complexity might be achieved by fusing the forebrain-type organoids with cerebral organoids of different regional identity21,22.
Taken together, the forebrain-type organoid protocol presented here offers an easily applicable and reliable tool for the generation of early cortical structures in vitro. The protocol gives rise to highly homogeneous early cortical tissue across multiple iPSC lines and can be utilized to reliably generate individual-specific cortical tissue. Thus, the system is particularly suitable for applications that require a high degree of homogeneity and reproducibility such as disease modeling.
The authors have nothing to disclose.
The work was supported by the Ministry of Innovation Science and Research of North Rhine-Westphalia (Junior Research Group) and by the ERA-NET NEURON, JTC 2015 Neurodevelopmental Disorders, STEM-MCD.
A83-01 | StemGent | 130-106-274 | 500 nM |
B27 Supplement | Gibco | 17504-044 | 1 to 100 |
Basement membrane extract (e.g. Geltrex) | Gibco | A14132-02 | |
Cyclic adenosine monophosphate (cAMP) | Sigma-Aldrich | A9501 | 0.15 µg/mL |
Cell-dissociation reagent (TrypLE Express) | Gibco | 12605028 | |
Counting chamber e.g. Fuchs-Rosenthal | Karl Hecht | 40449001 | |
D-Glucose | Carl Roth | HN06.3 | 0.2 mg/mL |
DMEM-F12 L-Glutamin | Gibco | 11320033 | |
Embedding molds (Tissue-Tek Cryomold) | Sakura Finetek | 4565 | |
Ethylenediaminetetraacetic acid | Sigma-Aldrich | E6511 | 0.5 mM |
Gelantin | Sigma-Aldrich | G1890 | |
Heparin | Sigma-Aldrich | H3149-25KU | 10 ug/mL |
Inhibitor of WNT response (IWR-1) | Enzo Life Science | BML-WN103-0005 | 10 ug/mL |
Insulin | Sigma-Aldrich | 91077C | 2.5 µg/mL |
IPSC medium for monolayer cultures (Pluripro) | Cell Guidance Systems | MK01 | |
L-alanyl-L-glutamine (GlutaMax) | Gibco | 35050038 | 1% |
Low-adhesion 6 cm plates | Labomedic | 2081646L | |
Low-adhesion 10 cm plates | Labomedic | 2081646O | |
LDN-193189 | Miltenyi Biotec | 130-104-171 | 180 nM |
N2 Supplement | Gibco | 17502-048 | 1 to 200 |
Non-essential amino acids | Gibco | 11140035 | 0.50% |
Paraformaldehyde | Sigma-Aldrich | P6148 | 4.00% |
Phosphate buffered saline (PBS) | Gibco | 14190144 | |
Plastic paraffin film (Parafilm) | BRAND GMBH + CO KG | 701606 | |
ROCK inhibitor Y-27632 | Cell Guidance Systems | SM02-100 | 5 µM or 50 µM |
Sucrose | Sigma-Aldrich | S7903 | |
Tubes 15 mL | Corning Life Sciences | 734-0451 | |
Microscope Slides e.g. Superfrost Plus Microscope Slides | Thermo Scientific | 4951PLUS4 | |
Tissue culture 6 well plate | Falcon | 734-0019 | |
Tissue culture 24 well plate | Falcon | 734-0949 | |
Trypan blue stain | Gibco | 15250-061 | |
Ultra-low-binding 96 well lipidure-coat plate A-U96 | Amsbio | AMS.51011610 | |
Antibodies | |||
Sox2 | R&D Systems | MAB2018 | |
Pax6 | Covance | PRB-278P-100 | |
Otx2 | R&D Systems | ab9566 | |
Emx1 | Sigma | HPA006421 | |
N-cadherin | BD | 610921 | |
ZO-1 | Life Tech | 61-7300 | |
P-Vimentin | Biozol | D076-3 | |
Tpx2 | Novus Biologicals | NB500-179 | |
Acetylated α-tubulin | NEB/CS | 5335 | |
Alexa488 anti ms | Invitrogen | A11001 | |
Alexa488 anti rb | Invitrogen | A11008 | |
Alexa555 anti ms | Invitrogen | A21424 | |
Alexa555 anti rb | Invitrogen | A21429 |