Summary

增殖和静止人成纤维细胞的全基因组转录衰变率的测定

Published: January 02, 2018
doi:

Summary

我们描述了一种生成增殖和静止的主要人真皮成纤维细胞的协议, 监测转录衰变率, 并识别差异腐烂的基因。

Abstract

静止是一种暂时的可逆状态, 其中细胞停止了细胞分裂, 但保留了增殖的能力。包括我们在内的多项研究表明, 静止与基因表达的广泛变化有关。其中一些变化发生在扩散相关转录因子的水平或活动的变化, 如 E2F 和 c-myc。我们已经证明, mRNA 的衰变也可以促进增殖和静止细胞之间基因表达的改变。在本协议中, 我们描述了建立人真皮包皮成纤维细胞增殖和静止培养的过程。然后, 我们描述的程序, 抑制新的转录在增殖和静止细胞与放线菌 D (ActD)。ActD 治疗是一种直接和可重复的方法, 游离新转录从成绩单衰变。ActD 治疗的一个缺点是, 由于 ActD 影响细胞的生存能力, 时间过程必须限制在短时间内。成绩单的水平被监测的时间, 以确定成绩单衰变率。这一过程允许鉴定的基因和异构体, 表现出差异衰变的增殖与静止成纤维细胞。

Introduction

成绩单的稳定状态反映了成绩单合成和成绩单衰减的贡献。调节和协调转录衰减是控制生物过程的重要机制1,2,3,4。例如, 成绩单衰变率已被证明是贡献的时间序列事件后, 激活的炎症细胞因子肿瘤坏死因子5

我们以前已经表明, 在原始人成纤维细胞的增殖和平静之间的过渡与许多基因的转录水平的变化有关6。其中一些变化反映了这两个国家之间转录因子活动的差异。

成绩单的衰变率的变化也会导致在两个不同状态7,8中的成绩单的表达水平的变化。根据我们早先的发现, 扩散与静止之间的过渡与多个 rna9的级别的变化有关, 我们询问是否也有来自差异成绩单衰减的贡献增殖与静止成纤维细胞的基因表达。

为了监测成绩单的稳定性, 我们确定了在增殖与静止细胞中转录的全基因组的衰变率。为了达到这个目的, 我们通过引入一种新的转录抑制剂和监测个体转录在一段时间内消失的速率来监测增殖与静止成纤维细胞的衰变率。这种方法的优点是, 与简单监控总体基因表达的方法相比, 通过抑制新的转录合成, 我们将能够分别从它们的速率来确定这些转录的衰变率。转录.

ActD 治疗, 以抑制新的转录和确定成绩单衰变率已成功地应用于以往的多项研究。ActD 已经被用来解剖的重要性, RNA 的稳定性在转录丰度变化的结果, 从治疗与炎细胞因子5。同样的方法也被用来解剖的差异, 转录衰变率在增殖与分化的 C2C12 细胞, 因为他们采用了分化肌肉表型10。另外一个例子, 在多能和分化的小鼠胚胎干细胞中也检测到了全球 mRNA 半衰期11。在这些例子中, mRNA 衰变已被证明是非常重要的调节转录丰度和细胞向不同的细胞状态转变。

应用下面所述的方法, 我们发现, 当比较成纤维细胞在增殖和静态状态12时, 大约500基因的转录衰变率发生了变化。特别是, 我们发现 rna miR-29(在静止单元中 downregulated) 的目标在单元格过渡到静止时稳定。我们在这里描述的方法, 我们用来确定衰变率在增殖和静止细胞。这一方法是有用的比较全球 mRNA 衰变率在两个截然不同的, 但类似的条件, 当信息有关迅速腐烂的基因寻求。它也可以用来解决其他问题, 如细胞培养条件对转录衰变的影响, 例如, 在二维与三维的文化。衰变率可以被确定的基因组范围内的方法, 如微阵列或 RNA 序列. 或者, real-time qPCR 或北印迹可以用来确定一个基因的衰变率或型的型基础。这些速率可以用来计算每个被监测基因的半衰期, 并在两种情况下确定具有不同衰变率的基因。

Protocol

所有的实验都是由普林斯顿大学和加州大学洛杉矶分校的机构评审委员会批准的。 1. 制备增殖和接触抑制成纤维细胞 ActD 时间课程 注意: 本协议使用 timecourse 四 timepoints。三生物独立样品可以收集每 timepoint 通过收集不同的组织培养板在一个实验, 或者实验可以重复多次与细胞的不同的文化。在我们的经验, 一个10厘米 (直径) 组织培养皿 (一盘) 提供足够的 RN…

Representative Results

我们以前曾报道过在8小时的时间课程12中, 增殖和接触抑制主要人成纤维细胞的转录衰变率的微阵列分析结果。在补充表 1中提供了与增殖和接触抑制成纤维细胞比较的转录稳定性有显著变化的基因列表。荧光强度在时间零和在时间路线以后 ActD 治疗提供。基因被列入了名单上, 通过测定在增殖和接触抑制条件下有明显不同的斜坡的基因, 使用…

Discussion

静止可由外部信号诱发, 包括 mitogens 或血清的提取、细胞黏附缺乏和接触抑制。接触抑制是诱发静止的多种可能的方法之一, 是一种高度进化的保守过程, 细胞在反应细胞接触时退出增殖细胞周期。我们在这里的重点是接触抑制作为一个例子的方法来诱导平静。以前的研究报告说, 细胞接触可以影响 rna 生物25, 因此, 结果提供了一个静止方法的信息, 需要额外的研究来确定哪些变化…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

文森特卡塞尔是丽塔. 艾伦基金会 (http://www.ritaallenfoundation.org) 的弥尔顿学者。这项工作的经费来自国家普通医学科学研究所授予的 P50 GM071508 (私家侦探大卫博特斯坦), PhRMA 基金会赠款 2007RSGl9572, 国家科学基金会授予 OCI-1047879 8月大卫,国立普通医学科学院 R01 GM081686, 国立普通医学科学院 R01 GM0866465, 伊莱 & #38; 伊蒂丝再生医学和 #38 的广泛中心; 干细胞研究, 虹膜康托妇女健康中心/加州大学洛杉矶分校 CTSI 国立卫生研究院格兰特 UL1TR000124 和白血病淋巴瘤协会这份出版物中报告的研究得到了国家卫生研究院国家癌症研究所的 P50CA092131。资助者在研究设计、数据收集和分析、决定出版或准备原稿方面没有作用。是 Eli 和 #38 的成员; 伊蒂丝广泛的再生医学和 #38 中心; 干细胞研究, 加州大学洛杉矶分校分子生物学研究所, 加州大学洛杉矶分校生物信息学部际计划。

Materials

Centrifuges for microcentrifuge tubes capable of reaching 12,000 x g and 4°C
Equipment for running agarose gels
Sterile tissue culture plates and conical tubes
Dulbecco's Modified Eagle Medium Life Technologies 11965-118
Fetal bovine serum VWR 35-010-CV
Sterile serological pipets, pipettors and pipet tips for tissue culture
Individually wrapped, disposable Rnase-free pipettes, pipette tips and tubes for RNA isolation and analysis
Disposable gloves to be worn when handling reagents and RNA samples
RNaseZap Invitrogen AM9780 For decontaminating work surfaces from RNase
2.0 ml eppendorf tubes
Trypsin-EDTA  Solution 10X Millipore Sigma 9002-07-07
Sterile PBS Life Technologies 14190-250
Trizol Thermo Fisher Scientific 15596018
Actinomycin D Millipore Sigma A1410-2 mg inhibits transcription
Sterile DMSO Fisher Scientific 31-761-00ML solvent for actinomycin D
Chloroform Thermo Fisher Scientific ICN19400225 MP Biomedicals, Inc product
Isopropanol Fisher Scientific BP2618500 molecular biology grade
Ethanol Fisher Scientific BP28184 molecular biology grade
RNase-free Glycogen (20 mg/ml aqueous solution) Thermo Fisher Scientific R0551 carrier for RNA precipitation
TURBO DNA-free Kit Thermo Fisher Scientific AM1907 removes DNA with DNase, then, in a subsequent step,  inactivates DNA and removes divalent cations
Agarose Thermo Fisher Scientific ICN820721 MP Biomedicals, Inc product
Loading dye for RNA gel Thermo Fisher Scientific R0641 suitable even for denaturing electrophoresis
Millenium RNA markers Thermo Fisher Scientific AM7150 RNA ladder
One-color RNA Spike-in Kit Agilent Technology 5188-5282 Example spike-in control for Agient microarray analysis
Tris base Fisher Scientific BP152-1 molecular biology grade, for TAE buffer
Glacial acetic acid Fisher Scientific A38-500 for TAE buffer
EDTA Fisher Scientific BP120-500 electrophoresis grade, for gels
Ethidium bromide Millipore Sigma E7637 for molecular biology
External RNA Controls Consortium RNA Spike-in Mix Thermo Fisher Scientific 4456740 Spike-in control for RNA Seq
TruSeq Stranded mRNA Library Preparation Kit A (48 samples, 12 indexes) Illumina RS-122-2101 for RNA Seq
96-well 0.3 ml PCR plate Thermo Fisher Scientific AB-0600 for real-time qPCR
Microseal B adhesive seals Bio-Rad MSB1001 for real-time qPCR
Rnase/Dnase-free Reagent Reservoirs VWR 89094-662 for real-time qPCR
Rnase/Dnase-free Eight tube strips and caps Thermo Fisher Scientific AM12230 for real-time qPCR
SuperScript Reverse Transcriptase Invitrogen 18090010 for real-time qPCR
AMPure XP Beads Beckman Coulter A63880 for real-time qPCR

Riferimenti

  1. Neff, A. T., Lee, J. Y., Wilusz, J., Tian, B., Wilusz, C. J. Global analysis reveals multiple pathways for unique regulation of mRNA decay in induced pluripotent stem cells. Genome Res. 22 (8), 1457-1467 (2012).
  2. Raghavan, A., Ogilvie, R. L., Reilly, C., Abelson, M. L., Raghavan, S., Vasdewani, J., Krathwohl, M., Bohjanen, P. R. Genome-wide analysis of mRNA decay in resting and activated primary human T lymphocytes. Nucleic Acids Res. 30 (24), 5529-5538 (2002).
  3. Cheadle, C., Fan, J., Cho-Chung, Y. S., Werner, T., Ray, J., Do, L., Gorospe, M., Becker, K. G. Control of gene expression during T cell activation: alternate regulation of mRNA transcription and mRNA stability. BMC Genomics. 6, 75 (2005).
  4. Yang, E., van Nimwegen, E., Zavolan, M., Rajewsky, N., Schroeder, M., Magnasco, M., Darnell, J. E. Decay rates of human mRNAs: correlation with functional characteristics and sequence attributes. Genome Res. 13 (8), 1863-1872 (2003).
  5. Hao, S., Baltimore, D. The stability of mRNA influences the temporal order of the induction of genes encoding inflammatory molecules. Nat Immunol. 10 (3), 281-288 (2009).
  6. Coller, H. A., Sang, L., Roberts, J. M. A new description of cellular quiescence. PLoS Biol. 4 (3), 83 (2006).
  7. Wilusz, C. J., Wormington, M., Peltz, S. W. The cap-to-tail guide to mRNA turnover. Nat Rev Mol Cell Biol. 2 (4), 237-246 (2001).
  8. Garneau, N. L., Wilusz, J., Wilusz, C. J. The highways and byways of mRNA decay. Nat Rev Mol Cell Biol. 8 (2), 113-126 (2007).
  9. Suh, E. J., Remillard, M. Y., Legesse-Miller, A., Johnson, E. L., Lemons, J. M., Chapman, T. R., Forman, J. J., Kojima, M., Silberman, E. S., Coller, H. A. A microRNA network regulates proliferative timing and extracellular matrix synthesis during cellular quiescence in fibroblasts. Genome Biol. 13 (12), 121 (2012).
  10. Hoen, P. A., Hirsch, M., de Meijer, E. J., de Menezes, R. X., van Ommen, G. J., den Dunnen, J. T. mRNA degradation controls differentiation state-dependent differences in transcript and splice variant abundance. Nucleic Acids Res. 39 (2), 556-566 (2011).
  11. Sharova, L. V., Sharov, A. A., Nedorezov, T., Piao, Y., Shaik, N., Ko, M. S. Database for mRNA half-life of 19 977 genes obtained by DNA microarray analysis of pluripotent and differentiating mouse embryonic stem cells. DNA Res. 16 (1), 45-58 (2009).
  12. Johnson, E. L., Robinson, D. G., Coller, H. A. Widespread changes in mRNA stability contribute to quiescence-specific gene expression patterns in a fibroblast model of quiescence. BMC Genomics. 18 (1), 123 (2017).
  13. Legesse-Miller, A., Elemento, O., Pfau, S. J., Forman, J. J., Tavazoie, S., Coller, H. A. let-7 Overexpression leads to an increased fraction of cells in G2/M, direct down-regulation of Cdc34, and stabilization of Wee1 kinase in primary fibroblasts. J Biol Chem. 284 (11), 6605-6609 (2009).
  14. Jiang, L., Schlesinger, F., Davis, C. A., Zhang, Y., Li, R., Salit, M., Gingeras, T. R., Oliver, B. Synthetic spike-in standards for RNA-seq experiments. Genome Res. 21 (9), 1543-1551 (2011).
  15. Tan, P. K., Downey, T. J., Spitznagel, E. L., Xu, P., Fu, D., Dimitrov, D. S., Lempicki, R. A., Raaka, B. M., Cam, M. C. Evaluation of gene expression measurements from commercial microarray platforms. Nucleic Acids Res. 31 (19), 5676-5684 (2003).
  16. Wang, Z., Gerstein, M., Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 10 (1), 57-63 (2009).
  17. Wong, M. L., Medrano, J. F. Real-time PCR for mRNA quantitation. Biotechniques. 39 (1), 75-85 (2005).
  18. Streit, S., Michalski, C. W., Erkan, M., Kleeff, J., Friess, H. Northern blot analysis for detection and quantification of RNA in pancreatic cancer cells and tissues. Nat Protoc. 4 (1), 37-43 (2009).
  19. Livak, K. J., Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25 (4), 402-408 (2001).
  20. Anders, S., Reyes, A., Huber, W. Detecting differential usage of exons from RNA-seq data. Genome Res. 22 (10), 2008-2017 (2012).
  21. Vandenbroucke, I. I., Vandesompele, J., Paepe, A. D., Messiaen, L. Quantification of splice variants using real-time PCR. Nucleic Acids Res. 29 (13), 68-68 (2001).
  22. Hargrove, J. L., Hulsey, M. G., Beale, E. G. The kinetics of mammalian gene expression. Bioessays. 13 (12), 667-674 (1991).
  23. Benjamini, Y., Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B. 57, 289-300 (1995).
  24. Hwang, H. W., Wentzel, E. A., Mendell, J. T. Cell-cell contact globally activates microRNA biogenesis. Proc Natl Acad Sci U S A. 106 (17), 7016-7021 (2009).
  25. Friedel, C. C., Dolken, L., Ruzsics, Z., Koszinowski, U. H., Zimmer, R. Conserved principles of mammalian transcriptional regulation revealed by RNA half-life. Nucleic Acids Res. 37 (17), 115 (2009).
  26. Soeiro, R., Amos, H. mRNA half-life measured by use of actinomycin D in animal cells – A caution. Biochimica et Biophysica Acta. 129 (2), 406-409 (1966).
  27. Perez-Ortin, J. E., Alepuz, P., Chavez, S., Choder, M. Eukaryotic mRNA decay: methodologies, pathways, and links to other stages of gene expression. J Mol Biol. 425 (20), 3750-3775 (2013).
  28. Chen, C. Y., Ezzeddine, N., Shyu, A. B. Messenger RNA half-life measurements in mammalian cells. Methods Enzymol. 448, 335-357 (2008).
  29. Gupta, I., Clauder-Munster, S., Klaus, B., Jarvelin, A. I., Aiyar, R. S., Benes, V., Wilkening, S., Huber, W., Pelechano, V., Steinmetz, L. M. Alternative polyadenylation diversifies post-transcriptional regulation by selective RNA-protein interactions. Mol Syst Biol. 10, 719 (2014).
  30. Geisberg, J. V., Moqtaderi, Z., Fan, X., Ozsolak, F., Struhl, K. Global analysis of mRNA isoform half-lives reveals stabilizing and destabilizing elements in yeast. Cell. 156 (4), 812-824 (2014).
  31. Haruki, H., Nishikawa, J., Laemmli, U. K. The anchor-away technique: rapid, conditional establishment of yeast mutant phenotypes. Mol Cell. 31 (6), 925-932 (2008).
  32. Cleary, M. D., Meiering, C. D., Jan, E., Guymon, R., Boothroyd, J. C. Biosynthetic labeling of RNA with uracil phosphoribosyltransferase allows cell-specific microarray analysis of mRNA synthesis and decay. Nat Biotechnol. 23 (2), 232-237 (2005).
  33. Rabani, M., Levin, J. Z., Fan, L., Adiconis, X., Raychowdhury, R., Garber, M., Gnirke, A., Nusbaum, C., Hacohen, N., Friedman, N., et al. Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells. Nat Biotechnol. 29 (5), 436-442 (2011).
  34. Marzi, M. J., Ghini, F., Cerruti, B., de Pretis, S., Bonetti, P., Giacomelli, C., Gorski, M. M., Kress, T., Pelizzola, M., Muller, H., et al. Degradation dynamics of microRNAs revealed by a novel pulse-chase approach. Genome Res. 26 (4), 554-565 (2016).

Play Video

Citazione di questo articolo
Mitra, M., Lee, H. N., Coller, H. A. Determining Genome-wide Transcript Decay Rates in Proliferating and Quiescent Human Fibroblasts. J. Vis. Exp. (131), e56423, doi:10.3791/56423 (2018).

View Video