Se presenta un protocolo detallado de un modelo de ratón para enterohemorrágica e. coli (EHEC) colonización utilizando bacterias etiquetado bioluminiscencia. La detección de estas bacterias bioluminiscentes por un no-invasivo en vivo sistema de animales vivos de imagen puede avanzar nuestra comprensión actual de la colonización de EHEC.
Enterohemorrágica e. coli (EHEC) O157: H7, que es un patógeno de transmisión alimentaria que causesdiarrhea, colitis hemorrágica (HS), y síndrome urémico hemolítico (SUH), colonizar en el tracto intestinal de los seres humanos. Para estudiar el mecanismo detallado de la colonización de EHEC en vivo, es imprescindible disponer de modelos animales para controlar y cuantificar la colonización de EHEC. Se demuestra aquí un modelo de colonización de ratón-EHEC transformando el plásmido expresando bioluminiscente a EHEC para monitorear y cuantificar la colonización de EHEC en anfitriones de vida. Animales inoculados con ECEH etiquetado bioluminiscencia muestran intensas señales bioluminiscentes en ratones por la detección con un no-invasivo en vivo sistema de imagen. Después de 1 y 2 días post infección, señales bioluminiscentes todavía se podían detectar en los animales infectados, lo cual sugiere que EHEC colonizan en anfitriones de al menos 2 días. También demostramos que estos EHEC bioluminiscente localizar al intestino de ratón, específicamente en el ciego y el colon, de imágenes de ex vivo . Este modelo de colonización de ratón-EHEC puede servir como una herramienta para avanzar en el conocimiento actual del mecanismo de colonización de EHEC.
ECEH O157: H7 es un patógeno que causa diarrea1, HS2, HUS3y falta renal aguda incluso4 a través de agua o alimentos contaminados. EHEC es un patógeno Enterobacter y coloniza en el tracto gastrointestinal de los seres humanos1. Cuando EHEC primero se adhieren al epitelio intestinal del anfitrión, inyectan los factores de colonización en las células del huésped a través del sistema de la secreción del III tipo (T3SS) que funciona como una jeringa molecular induciendo una fijación y borrar (A/E) lesión posteriormente para hacer cumplir adherencia (colonización)5. Estos genes involucrados en la formación de la lesión A/E son codificados por el locus de la isla de patogenicidad del enterocyte effacement (LEE)5.
Bioluminescence es una reacción química produzca luz, en la cual luciferase cataliza su luciferin del substrato para generar luz visible6. Este proceso enzimático requiere con frecuencia la presencia de oxígeno o trifosfato de adenosina (ATP)6. Bioluminiscencia (BLI) la proyección de imagen permite a los investigadores la visualización y cuantificación de las interacciones huésped-patógeno en animales vivos7. BLI puede caracterizar el ciclo de infección bacteriana en animales vivos siguiendo las bacterias bioluminiscentes que migran e invaden diferentes tejidos7; Esto revela una evolución dinámica de la infección. Por otra parte, la carga bacteriana en los animales se relaciona con la señal bioluminiscente8; por lo tanto, es un indicador conveniente para estimar las condiciones patológicas de los animales experimentales en una forma simple y directa.
El plásmido utilizado aquí contenida el operón de la luciferasa, luxCDABE, que es de la bacteria Photorhabdus luminescens que codifica su propia luciferase sustrato7,9. Al transformar este plásmido de expresión de luciferasa en las bacterias, los procesos de colonización y la infección pueden controlarse mediante la observación de estas bacterias bioluminiscentes en animales vivos. En general, BLI y bacterias etiquetado bioluminiscencia permiten a los investigadores a monitorear los números bacterianos y ubicación, viabilidad bacteriana con tratamiento de antibióticos y la expresión génica bacteriana en infección/colonización6, 7. se han reportado numerosas bacterias patógenas que expresar el operón luxCDABE para examinar su expresión de ciclo o gen de infección en infección. Estas bacterias, incluyendo uropatógenos Escherichia coli10, EHEC8,11,12,13, enteropatógeno e. coli (EPEC)8, Citrobacter Rodentium14,15, Salmonella typhimurium16, Listeria monocytogenes17, Yersinia enterocolitica18,19, y Vibrio cholerae20, han sido documentados.
Varios modelos experimentales se han desarrollado para facilitar el estudio de ECEH colonización in vitro e in vivo21,22,23. Sin embargo, hay una falta de modelos animales adecuados para el estudio de la colonización la EHEC en vivoy, por tanto, la escasez resultante de los datos. Para facilitar el estudio de la EHEC colonización mecanismo en vivo, es valioso para construir modelos animales para observar y cuantificar la colonización de ECEH en los animales vivos en un método no invasivo.
Este manuscrito describe un modelo de colonización de EHEC de mouse que utiliza un sistema de expresión bioluminiscente para controlar la colonización de la ECEH en el tiempo de vida acoge. Ratones se inoculan intragástrica con EHEC etiquetado bioluminiscencia y se detecta la señal bioluminiscente en ratones con un no-invasivo en vivo imágenes del sistema13. Ratones infectan con ECEH etiquetado bioluminiscencia mostró significativas señales bioluminiscentes en su intestino después de 2 días post infección, lo que sugiere que las bacterias colonizan en el intestino del anfitrión después de 2 días post infección. Ex vivo imagen datos demostraron que esta colonización es específicamente en el ciego y el colon de los ratones. Mediante este modelo de ratón-EHEC, la colonización bioluminiscente de EHEC puede detectarse en la vida de acogida un en vivo sistema, para estudiar los mecanismos detallados de la colonización de bacterias entéricas, que puede promover la comprensión más en la proyección de imagen Inducida por la EHEC cambios fisiológicos y patológicos.
Se ha divulgado que EHEC transformada con el plásmido de la luciferasa se ha utilizado para examinar su localización en hosts o expresión de gen en vivo8,11,12. El modelo murino demostrado aquí también se ha divulgado para detectar el momento de EHEC colonizado y localización en anfitrión murino8. Sin embargo, nos ofrecen el protocolo de detalle de cómo administrar la inoculación a raton…
The authors have nothing to disclose.
Reconocemos a Chi-Chung Chen del Departamento de investigación médica, centro médico de Chi Mei (Tainan, Taiwan) la ayuda del ratón para la infección y el apoyo del centro de animales de laboratorio de la Universidad Nacional Cheng Kung. Este trabajo es apoyado por el Ministro de ciencia y tecnología (MOST) subvenciones (más 104-2321-B-006-019, 105-2321-B-006-011,-005 de and106-2321-B-006) a CC.
Shaker incubator | YIH DER | LM-570R | bacteria incubation |
Orbital shaking incubator | FIRSTEK | S300 | bacteria incubation |
pBSL180 | source of nptII gene | ||
pAKlux2 | source of luxCDABE operon | ||
T&A Cloning Kit | Yeastern Biotech | FYC001-20P | use for TA cloning |
Nsi I | NEB | R0127S | use for plasmid cloning |
Sca I | NEB | R0122S | use for plasmid cloning |
Spe I-HF | NEB | R0133S | use for plasmid cloning |
Sma I | NEB | R0141S | use for plasmid cloning |
T4 ligase | NEB | M0202S | use for plasmid cloning |
Ex Taq | TaKaRa | RR001A | use for PCR amplification |
10X Ex Taq Buffer | TaKaRa | RR001A | use for PCR amplification |
dNTP Mixture | TaKaRa | RR001A | use for PCR amplification |
PCR machine | applied Biosystem | 2720 thermal cycler | for PCR amplification |
Glycerol | SIGMA | G5516-1L | use for bacteria stocking solution |
NaCl | Sigma | 31434-5KG-R | chemical for making LB medium, 10 g/L |
Tryptone | CONDA pronadisa | Cat 1612.00 | chemical for making LB medium, 10 g/L |
Yeast Extract powder | Affymetrix | 23547-1 KG | chemical for making LB medium, 5 g/L |
Agar | CONDA pronadisa | Cat 1802.00 | chemical for making LB agar |
kanamycin | Sigma | K4000-5G | antibiotics, use for seleciton |
streptomycin | Sigma | S6501-100G | antibiotics, eliminate the microbiota in mice |
EDL933 competent cell | Homemade | method is on supplemental document | |
Electroporator | MicroPulser | for electroporation | |
Electroporation Cuvettes | Gene Pulser/MicroPulser | 1652086 | for electroporation |
High-speed centrifuge | Beckman Coulter | Avanti, J-26S XP | use for centrifuging bacteria |
Fixed-Angle Rotor | Beckman Coulter | JA25.5 | use for centrifuging bacteria |
Fixed-Angle Rotor | Beckman Coulter | JLA10.5 | use for centrifuging bacteria |
centrifuge bottles | Beckman Coulter | REF357003 | use for centrifuging bacteria |
centrifuge bottles | Thermo Fisher scientific | 3141-0500 | use for centrifuging bacteria |
eppendorf biophotometer plus | eppendorf | AG 22331 hamburg | for measuring the OD600 value of bacteria |
C57BL/6 mice | Laboratory Animal Center of NCKU | ||
lab coat, gloves | for personnel protection | ||
isoflurane | Panion & BF Biotech Inc. | G-8669 | for mice anesthesia, pharmaceutical grade |
1ml syringe | use for oral gavage of mice | ||
Reusable 22 G ball-tipped feeding needle | φ0.9 mm X L 50 mm | use for oral gavage of mice | |
surgical scissors | use for mice experiment | ||
Xenogen IVIS 200 imaging system | Perkin Elmer | IVIS spectrum | use for bioluminescent image capture |
Living Image Software | Perkin Elmer | version 4.1 | use for quantifying the image data |