For small chiral species, Coulomb Explosion Imaging provides a new approach to determine the handedness of individual molecules.
This article shows how the COLTRIMS (Cold Target Recoil Ion Momentum Spectroscopy) or the “reaction microscope” technique can be used to distinguish between enantiomers (stereoisomers) of simple chiral species on the level of individual molecules. In this approach, a gaseous molecular jet of the sample expands into a vacuum chamber and intersects with femtosecond (fs) laser pulses. The high intensity of the pulses leads to fast multiple ionization, igniting a so-called Coulomb Explosion that produces several cationic (positively charged) fragments. An electrostatic field guides these cations onto time- and position-sensitive detectors. Similar to a time-of-flight mass spectrometer, the arrival time of each ion yields information on its mass. As a surplus, the electrostatic field is adjusted in a way that the emission direction and the kinetic energy after fragmentation lead to variations in the time-of-flight and in the impact position on the detector.
Each ion impact creates an electronic signal in the detector; this signal is treated by high-frequency electronics and recorded event by event by a computer. The registered data correspond to the impact times and positions. With these data, the energy and the emission direction of each fragment can be calculated. These values are related to structural properties of the molecule under investigation, i.e. to the bond lengths and relative positions of the atoms, allowing to determine molecule by molecule the handedness of simple chiral species and other isomeric features.
Chirality is a feature of our nature that has been fascinating researchers for more than 150 years. In the 19th century, Pasteur, van't Hoff and others discovered that molecules can occur in two mirror image structures that are not super-imposable – like our left and right hands. This property was termed 'chiral', from the Greek word for 'hand'.
So far, no difference in thermodynamic properties or in energy levels of left- and right-handed forms (the two 'enantiomers') has been found. In order to analyze the handedness of a given sample and to separate the enantiomers, interaction with other chiral molecules can be used, as is for example done in various chromatographical approaches.1 Chiroptical methods such as (vibrational) circular dichroism, (V)CD, and optical rotatory dispersion, ORD, are routinely employed to distinguish between enantiomers.2
When it comes to the determination of the microscopic structure, these techniques require additional information, e.g. from quantum-chemical calculations. The only technique that is widely accepted to directly determine the absolute configuration is anomalous X-ray diffraction.3
It has recently been shown that the absolute configuration of simple chiral species can be determined by Coulomb Explosion Imaging.4,5 In this approach, molecules in the gas phase are multiply ionized so that the remaining cores strongly repel each other. This repulsion leads to fast fragmentation ('explosion') of the molecules. The direction and the magnitude of the fragment momenta correlate to the structure of the molecule – for small molecules, the momentum directions correspond surprisingly well to the bond axes. Coulomb Explosion for molecular structure determination has been pioneered using molecular ion beams from an accelerator.6 This beam foil technique has recently also been applied for chiral recognition.7
Contrary to anomalous X-ray diffraction, the sample must not be crystalline but provided in the gas phase. This makes the Coulomb Explosion approach ideal for volatile species and thus complementary to X-ray diffraction. In certain cases, the handedness can even be determined for individual molecules.
In practice, the exact reconstruction of the molecular structure has proven difficult even for methane derivatives, e.g. molecules with a central carbon and different substituents. This is attributed to the fact that the interaction between the fragments is not exactly Coulombic and that not all bonds break simultaneously. In order to obtain stereochemical information, especially to distinguish between enantiomers, this reconstruction is fortunately not necessary. Instead, the momentum vectors of different fragments can be correlated to yield a quantity that is distinct for the left- and right-handed molecules. To get reliable results, at least four fragment momenta have to be recorded.
In order to measure this momentum information, the fragments from one – and only one – molecular break-up have to be detected in a single measurement step. This condition is usually referred to as 'coincident detection'. In addition, the emission directions have to be analyzed, which amounts in practice to record the time and the position of the fragment impact in a list-mode data format.
In atomic and molecular physics, techniques have been developed that implement this approach of measurement by employing electrostatic spectrometers for mass separation and time- and position-sensitive multi-hit detectors. The most prominent example is the COLTRIMS (Cold Target Recoil Ion Momentum Spectroscopy) setup – also known as Reaction Microscope.8,9 A sketch for this kind of experiment is given in Figure 1. Contrary to a standard COLTRIMS that can record electrons as well, Coulomb Explosion Imaging requires only the ion detector.
Spectrometer and detector are mounted under ultra-high vacuum (<1 x 10-9 hPa) to avoid creation of ions from residual gas. Single molecules of the sample are provided via a gaseous free molecular jet created by supersonic expansion: By virtue of the vapor pressure, the molecules expand through a small nozzle (around 50 µm diameter) into the vacuum. This part of the experiment, the source chamber, is separated from the interaction region by usually two skimmers and differentially pumped stages. An additional differentially pumped section is located behind the interaction region to dump the gas jet and thus avoid background gas in the interaction region.
The ionizing radiation intersects with the molecular jet under 90°. Most laboratories nowadays use femtosecond laser pulses, although synchrotron radiation, fast ions or electron impact are possible 'projectiles' to induce Coulomb Explosion.
The following protocol makes the assumption that a running setup for coincident imaging of ions and a femtosecond laser are available in the lab. The peak intensity needed to induce Coulomb Explosion into four or even five fragments must be on the order of 6 x 1014 W/cm2. To avoid exceedingly long measurements, the repetition rate of the laser should be 10 kHz or more. This is crucial because, on the one hand, coincident detection can only be ascertained if the probability for fragmentation in the laser focus is significantly below 1 per laser pulse (ideally not more than 10%). The total fragmentation rate, on the other hand, should not be lower than a few kHz because the share of relevant multifragmentation pathways is usually less than 10-4. As encouraging fact, it should be mentioned that in principle already a single fragmentation event is sufficient to identify the configuration of an enantiopure sample, and that detection of a few hundred allows to determine the abundance of the enantiomers in a sample of unknown enantiomeric composition.
Caution: Make sure to be familiar with all possible hazards connected with the experiment and in the laboratory. The procedure below includes class-IV lasers, high voltage and vacuum. Consult the material safety data sheet (MSDS) for the species to be investigated.
1. Preparation
2. Turning on Spectrometer and Detectors
NOTE: This part of the protocol slightly depends on the actual implementation of the spectrometer and detector system. The description here is valid for a standard COLTRIMS setup with a hexagonal delay line detector (HEX75).10 In this implementation, a detector has 7 output channels: one for the microchannels plates (MCPs) and two for each of the three layers of the anode.
3. Sample Delivery
4. Measurement
NOTE: The following steps are performed in the data acquisition software.
5. Data Analysis
NOTE: Data analysis in a Coulomb Explosion Imaging experiment is a complex, yet rewarding task because many parameters can be fine-tuned after the experiment and a multitude of correlations between the measured momenta can be explored. All following steps are usually performed after the experiment in the data analysis software.
In this part, we show results obtained for halomethanes. These species are ideal for proof-of-principle experiments due to their simplicity and high vapor pressure. In the meantime, the more complex species halothane has been investigated using single soft-x-ray photons from a synchrotron source to induce multiple ionization.14
CHBrClF
Bromochlorofluoromethane (CHBrClF) is a textbook example for chiral molecules with a stereogenic carbon atom. It is also the ideal candidate for Coulomb Explosion Imaging due to its simple structure and the high vapor pressure (around 600 hPa at room temperature). Unfortunately, the species is not available commercially; for the experiment presented here, a racemic mixture was synthesized by reacting CHBr2Cl with HgF2 according to reference15. Enantio-enriched samples are difficult to obtain in the quantities needed so that only results for racemates have been obtained so far.
For the results presented here the sample was cooled to around 240 K to obtain an appropriate target density with the given nozzle (10% of ionization probability per pulse). The peak intensity of the laser was estimated to be 6 x 1014 W/cm2. The measurement at 100 kHz laser repetition rate took 11 h.
In order to distinguish R and S-enantiomers, a normalized triple product is calculated from the momentum vectors of the three halogens fluorine, chlorine, and bromine. Geometrically, this quantity can be interpreted as the cosine of the angle between the fluorine momentum and the plane of the chlorine and bromine momenta.
Figure 3 shows cosθ for the isotope CH79Br35ClF, together with the geometric definition. Two clear peaks are visible, indicating the enantiomers. The position of the peaks is consistent with a classical molecular dynamics simulation. As almost no background is present, the assignment of handedness works on a single molecule level.
CHBrCl2
The chirality of CHBrCl2 occurs only if the both isotopes 35Cl and 37Cl are present in the same molecule. A sample with natural abundance of isotopes thus contains chiral and achiral molecules. Two additional complications arise here: Firstly, the time-of-flight distributions of the chlorine and bromine isotopes overlap respectively due to the small mass difference. This is particularly relevant for chlorine as the determination of handedness depends on the correct assignment of the isotopes. Secondly, the chiral species CH79Br35Cl37Cl has (within the setup's accuracy) the same total mass as the achiral species CH81Br35Cl2. The investigation of this species can thus be seen as a benchmark test for the method.
With the spectrometer used (spectrometer length s = 60.5 mm, electric field strength E = 57.1 V/cm), the data for the chiral isotope CH79Br35Cl37Cl could be selected via the total momentum, using an algorithm suggested by reference16 to assign which of the hits belongs to which isotope.
Geometrical considerations lead to the conclusion that there can be orientations of the molecule in space where the two chlorine isotopes have the same time-of-flight; in this case, they cannot be distinguished as a matter of principle. A procedure to sort out these events has been described in the supplementary materials reference4. As a result, the configuration even of isotopically chiral molecules can be determined with high reliability.
Figure 1: View into a COLTRIMS Setup. Molecules enter the setup through the nozzle and pass through a pair of skimmers. In the interaction chamber, the laser pulses cross with the molecular jet under 90°. Ions are guided by the electric field of the spectrometer to the detector (top). For better visibility, not all spectrometer plates are shown. The remaining molecules are dumped in a differentially pumped section (jet dump) to keep the background pressure in the interaction region as low as possible. Figure modified from reference17 with permission by G. Kastirke. Please click here to view a larger version of this figure.
Figure 2: Four-Particle Coincidence Spectrum. This histogram is an extension of a time-of-flight mass spectrum to four particles: The sum of the time-of-flights for the first and second hit on the detector are plotted on the x-axis, the sum for the third and fourth hit on the y-axis. The center of the peaks allows to identify the masses of the four detected fragments. The shape of the structures contains additional information: If the momenta of the fragments add up to zero, the events are contained in a narrow line (H, CF, Cl, Br). If an undetected fragment carries momentum, the non-zero total momentum of the measured particle leads to a broadening of the features. For illustration purposes, data from synchrotron, not laser, measurements are used here due to higher statistics. Figure reproduced from reference5 with permission by Wiley-VCH. Please click here to view a larger version of this figure.
Figure 3: Distinction of enantiomers in the five-particle break-up of CHBrClF via the chirality parameter cos θ as defined in the text. The peak at positive values corresponds to the R-enantiomer, the peak at negative values to the S-enantiomer. The inset illustrates cos θ geometrically. The low background allows for an assignment of handedness for individual molecules. Figure reproduced from reference4 with permission by AAAS. Please click here to view a larger version of this figure.
Due to the variety of components, a COLTRIMS setup requires a rather high level of technical expertise, especially in the areas of vacuum technique, particle detection, fast electronics and data analysis. Before turning to the investigation of complex species, it should thus be thoroughly checked if the setup is running properly, e.g. by performing and analyzing a measurement on a diatomic or triatomic species.
Optimizing the intensity and duration of the laser pulses and the overlap with the molecular jet is essential to achieve as many multiple ionization events as possible. As the momentum distribution might broaden due to sequential ionization during different cycles of the laser pulse, the pulse duration should ideally not exceed 40 fs. During the measurement, it is crucial to obtain sufficient statistics. On the positive side, the determination of absolute configuration does not require a particularly high precision compared to other coincidence experiments, i.e. the procedure is rather robust to fluctuations in the laser or jet intensity and to electric field distortions in the spectrometer.
The most fundamental limitation of the technique concerns its applicability to larger molecules. One must keep in mind that the results represent the momenta of fragments, not the structure of the molecules in real space. For complex bio-molecules, the relation between measured momenta and molecular structure is not expected to be as straightforward as for the molecules presented here. In addition, complex molecules can produce many break-up channels that do not carry information on the configuration, possibly decreasing the yield of relevant channels. Theoretical modeling of the fragmentation, control of break-up patterns and more sophisticated analysis procedures will be needed if the technique is to be extended to molecules with three or more carbon atoms. At the current stage, it seems not possible to investigate the configuration of proteins or molecules of similar complexity, but the actual limitations have still to be determined.
Another limitation of the current setup is the relatively high sample consumption due to the molecular jet. It can be reduced by implementing a recycling mechanism (e.g. cold traps in the vacuum foreline). Nevertheless, it would be beneficial to test other sample preparation methods such as effusive jets, thermodesorption18 or laser desorption techniques19 that have been successfully applied for studying bio-molecules in the gas phase.
Coulomb Explosion Imaging is a destructive method, i.e. molecules that have been fragmented for determination of configuration cannot be used further. However, only a small fraction is actually ionized (which is one of the reasons for the high sample consumption mentioned in the previous paragraph). It might thus be possible to use the recycled molecules for subsequent application.
As the measurement of momenta allows to create an 'aligned' data set of the molecules and to select certain spatial directions, the coincidence technique opens new perspectives for the investigation of asymmetry effects in chiral molecules This is in particular the case if the momenta of the electrons are measured in coincidence which can be achieved by using a complete COLTRIMS setup. Pump-probe techniques additionally allow to study the structural dynamics of chiral species.
Very recently, Coulomb Explosion Imaging has also been used to determine the absolute geometries of cis and trans-isomers,20 adding a new class of possible species and questions to be addressed. As the investigation of stereochemistry with coincidence spectroscopy is still in its infancy, the authors hope that this article helps to inspire researchers working in the directions outlined in the preceding paragraphs to new experiments.
The authors have nothing to disclose.
We thank Robert Berger (Philipps-Universität Marburg, Germany) for inspiring discussions about the interpretation of our data and molecular chirality in general. We are grateful to Julia Kiedrowski, Alexander Schießer and Michael Reggelin from TU Darmstadt (Germany), as well as Benjamin Spenger, Manuel Mazenauer and Jürgen Stohner from ZHAW Wädenswil (Switzerland) for providing the sample.
The project was supported by the Hessen State Initiative for Scientific and Economic Excellence under the focus ELCH (Electron dynamics of chiral systems) and the Federal Ministry of Education and Research (BMBF). MS acknowledges financial support by the Adolf Messer foundation.
CHBrCl2 | SigmaAldrich | 139181-10G | or other suitable sample |
femtosecond laser system | KMLabs | Wyvern500 | |
High-reflective mirrors | EKSMA | 042-0800 | |
mirror mounts | Newport | U100-A-LH-2K | |
focusing mirror (protected silver, f = 75 mm) | Thorlabs | CM254-075-P01 | (if available: f = 60 mm) |
COLTRIMS spectrometer, including electronics and data acquisition system | RoentDek | custom | contrary to the standard COLTRIMS, only one detector is needed |