Presentamos dos protocolos de sincronización celular que proporcionan un contexto para el estudio de eventos relacionados con fases específicas del ciclo celular. Mostramos que este enfoque es útil para analizar la regulación de genes específicos en un ciclo celular no perturbado o en la exposición a agentes que afectan el ciclo celular.
El programa de expresión génica del ciclo celular representa un paso crítico para comprender los procesos dependientes del ciclo celular y su papel en enfermedades como el cáncer. El análisis de expresión de genes regulado por el ciclo celular depende de la sincronización celular en fases específicas. Aquí se describe un método que utiliza dos protocolos de sincronización complementarios que se utiliza comúnmente para estudiar la variación periódica de la expresión génica durante el ciclo celular. Ambos procedimientos se basan en el bloqueo transitorio del ciclo celular en un punto definido. El protocolo de sincronización mediante el tratamiento con hidroxiurea (HU) conduce a la detención celular en la fase tardía G1 / S temprana, y la liberación de la detención mediada por HU proporciona una población celular que progresa uniformemente a través de S y G2 / M. El protocolo de sincronización mediante el tratamiento con timidina y nocodazol (Thy-Noc) bloquea células en mitosis temprana y la liberación de la detención mediada por Thy-Noc proporciona una población celular sincronizada adecuada para la fase G1 y la fase SIntente estudios La aplicación de ambos procedimientos requiere la monitorización de los perfiles de distribución del ciclo celular, que se realiza típicamente después de la tinción con yoduro de propidio (PI) de las células y el análisis mediado por citometría de flujo del contenido de ADN. Se muestra que el uso combinado de dos protocolos de sincronización es un enfoque robusto para determinar claramente los perfiles transcripcionales de los genes que se regulan diferencialmente en el ciclo celular ( es decir, E2F1 y E2F7), y por lo tanto para tener una mejor comprensión de su papel en el ciclo celular Procesos. Además, se demuestra que este enfoque es útil para el estudio de los mecanismos subyacentes a las terapias basadas en fármacos ( es decir, la mitomicina C, un agente anticancerígeno), ya que permite discriminar los genes que responden al agente genotóxico de los afectados exclusivamente por las perturbaciones del ciclo celular Impuesto por el agente.
La transición a través de todas las fases del ciclo celular se acopla a un programa de expresión génica fuertemente regulado. Se supone que esta coordinación "en y fuera" de la transcripción de genes a lo largo del ciclo celular está bajo el control de sistemas reguladores transcripcionales complejos, regulando no sólo el momento sino también los niveles de expresión génica. Se sabe que la desregulación de los componentes clave del ciclo celular contribuye al desarrollo de varias enfermedades y es un sello bien establecido de la tumorigénesis 1 , 2 . Los análisis transcriptómicos de todo el genoma llevados a cabo en células de levadura y de mamífero han revelado que un gran número de genes exhiben patrones de expresión génica periódicos en el ciclo celular, lo que sugiere que la fluctuación transcripcional durante el ciclo celular es un reflejo del requisito temporal de un producto génico dado En una fase precisa 3 , 4 , </suP> 5 .
Una tarea importante en el estudio de la expresión de genes regulados por el ciclo celular es la sincronización de células en fases específicas del ciclo celular. La sincronización celular ayuda a interpretar la asociación de un patrón de expresión génica a una transición de fase particular del ciclo celular, y ha conducido a una mejor comprensión de la regulación y la función de numerosos genes. La sincronización celular también es importante para el estudio del mecanismo de acción de los fármacos contra el cáncer, ya que los agentes quimioterapéuticos se sabe que afectan tanto la expresión de genes, así como la cinética del ciclo celular [ 6 , 7] . Sin embargo, a menudo es difícil determinar si las diferencias de expresión génica resultantes del tratamiento con estos agentes son una respuesta directa al tratamiento o son meramente la consecuencia de cambios en los perfiles del ciclo celular. Para distinguir entre estas posibilidades, la expresión génica debe analizarse en células que han sido sYnchronized antes de la adición del fármaco quimioterapéutico.
Con la excepción de algunas células primarias tales como células linfoides recién aisladas -que constituyen una población celular homogénea sincronizada en G08-, las líneas celulares establecidas in vitro crecen asincrónicamente en cultivo. Bajo condiciones de crecimiento regular, estas células de ciclo asincrónico se encuentran en todas las fases del ciclo celular, pero, preferentemente en G1 9 . Por lo tanto, este contexto no proporciona un escenario óptimo para el análisis funcional o de expresión génica en una fase específica del ciclo celular ( por ejemplo , G1, S, etc.). Las líneas celulares inmortalizadas no transformadas ( por ejemplo, fibroblastos) pueden sincronizarse con los llamados métodos fisiológicos 10 . Estos métodos se basan en las características de células primarias retenidas de las células no transformadas, tales como la inhibición del contacto celular y la dependencia del factor de crecimiento con el fin de continuar el ciclo. EliminaciónDe suero en combinación con inhibición de contacto hace que las células no transformadas sean detenidas en G0 / G1. Sin embargo, la sincronización del ciclo celular de entrada y la progresión a menudo requiere de subcultura, que también implica el desprendimiento artificial de las células y re-chapado [ 10] . Más importante aún, este método no es adecuado para la sincronización de líneas celulares transformadas, la gran mayoría de líneas celulares establecidas actualmente en uso, caracterizado por carecer de inhibición del crecimiento mediada por contacto celular o respuesta a la retirada del factor de crecimiento. Por lo tanto, es evidente que se requieren métodos alternativos para la sincronización celular eficiente en fases específicas del ciclo celular. En términos generales, los métodos de sincronización más utilizados se basan en la inhibición química o farmacológica transitoria de un punto definido del ciclo celular, típicamente síntesis de ADN o formación de huso mitótico. La inhibición de la síntesis de ADN sincroniza las células deteniéndolas en fase G1 tardía o temprana. Esto puede hacerse12 , aphidicolin, un inhibidor de ADN polimerasas 13 , 14 , hidroxiurea, un inhibidor de ribonucleotide reductasa 15 , 16 o por cantidades en exceso de timidina 17 , 18 . Por otra parte, los inhibidores de la polimerización de los microtúbulos, tales como la colchicina o el nocodazol, son capaces de bloquear la formación del huso mitótico que conduce a la sincronización celular a principios de la fase M 19 , 20 , 21 .
En este trabajo se describe un método que implica dos protocolos de sincronización complementarios basados en la inhibición química transitoria para el estudio de la expresión de los genes regulados por el ciclo celular en el mRNAnivel. Este método es fundamental para definir el papel de los genes del ciclo celular en procesos específicos del ciclo celular. Además, proporciona un marco general para estudiar el impacto de los tratamientos contra el cáncer con el fin de detectar con precisión genes fármacos sensibles y para minimizar las interpretaciones erróneas derivadas de las perturbaciones en la progresión del ciclo celular generado por estos fármacos.
El análisis de la regulación fina de los genes regulados implicados en papeles transitorios y específicos en el ciclo celular requiere una población celular uniforme. Muchos investigadores usan rutinariamente líneas de células tumorales establecidas desde hace mucho tiempo para estos propósitos, y se han desarrollado una variedad de métodos para obtener poblaciones de células síncronas (o parcialmente sincrónicas), con el objetivo de acumular tantas células como sea posible en fases definidas de ciclo celula…
The authors have nothing to disclose.
Agradecemos a los miembros de los laboratorios Zubiaga y Altmeyer por sus útiles debates y por su apoyo técnico. Este trabajo ha contado con el apoyo del Ministerio Español (SAF2015-67562-R, MINECO / FEDER, UE), el Gobierno Vasco (IT634-13 y KK-2015/89) y la Universidad del País Vasco UPV / EHU UFI11 / 20).
DMEM, high glucose, GutaMAX supplement | Thermo Fisher Scientific | 61965-059 | |
FBS, qualified, E.U.-approved, South America origin | Thermo Fisher Scientific | 10270-106 | |
Penicillin-Streptomycin (10,000 U/mL) | Thermo Fisher Scientific | 15140-122 | |
0.25% Trypsin-EDTA (1X), phenol red | Thermo Fisher Scientific | 25200-072 | |
Thymidine | SIGMA | T1895-5G | Freshly prepared. Slight warming might help dissolve thymidine. |
Nocodazole | SIGMA | M-1404 | Stock solution in DMSO stored at -20 ºC in small aliquots |
Hydroxyurea | SIGMA | H8627 | Freshly prepared |
Mitomycin C from Streptomyces caespitosus | SIGMA | M4287 | 1.5mM stock solution in sterile H2O protected from light and stored at 4ºC |
Dimethyl sulfoxide | SIGMA | D2650 | |
Propidium iodide | SIGMA | P4170 | Stock solution in sterile PBS at 5 mg/ml, stored at 4º C protected from light. |
PBS pH 7.6 | Home made | ||
Ethanol | PANREAC | A3678,2500 | |
Chloroform | SIGMA | C2432 | |
Sodium Citrate | PANREAC | 131655 | |
Triton X-100 | SIGMA | T8787 | |
RNAse A | Thermo Fisher Scientific | EN0531 | |
TRIzol Reagent | LifeTechnologies | 15596018 | |
RNeasy Mini kit | QIAGEN | 74106 | |
High-Capacity cDNA Reverse Transcription Kit | Thermo Fisher Scientific | 4368814 | |
Anti-Cyclin E1 antibody | Cell Signaling | 4129 | 1:1000 dilution in 5% milk, o/n, 4 ºC |
Anti-Cyclin B1 antibody | Cell Signaling | 4135 | 1:1000 dilution in 5% milk, o/n, 4 ºC |
Anti-β-actin | SIGMA | A-5441 | 1:3000 dilution in 5 % milk, 1 hr, RT |
Anti-pH3 (Ser 10) antiboty | Millipore | 06-570 | Specified in the protocol |
Secondary anti-rabbit AlexaFluor 488 antibody | Invitrogen | R37116 | Specified in the protocol |
Secondary anti-mouse-HRP antibody | Santa Cruz Biotechnology | sc-3697 | 1:3000 dilution in 5 % milk, 1 hr, RT |
Forward E2F1 antibody (human) TGACATCACCAACGTCCTTGA | Biolegio | Designed by PrimerQuest tool (https://eu.idtdna.com/site) | |
Reverse E2F1 antibody (human) CTGTGCGAGGTCCTGGGTC | Biolegio | Designed by PrimerQuest tool (https://eu.idtdna.com/site) | |
Forward E2F7 antibody (human) GGAAAGGCAACAGCAAACTCT | Biolegio | Designed by PrimerQuest tool (https://eu.idtdna.com/site) | |
Reverse E2F7 antibody (human) TGGGAGAGCACCAAGAGTAGAAGA | Biolegio | Designed by PrimerQuest tool (https://eu.idtdna.com/site) | |
Forward p21Cip1 antibody (human) AGCAGAGGAAGACCATGTGGAC | Biolegio | Designed by PrimerQuest tool (https://eu.idtdna.com/site) | |
Reverse p21Cip1 antibody (human) TTTCGACCCTGAGAGTCTCCAG | Biolegio | Designed by PrimerQuest tool (https://eu.idtdna.com/site) | |
Forward TBP antibody (human) reference gene | Biolegio | Designed by PrimerQuest tool (https://eu.idtdna.com/site) | |
Reverse TBP antibody (human) | Biolegio | Designed by PrimerQuest tool (https://eu.idtdna.com/site) | |
Forward Oxa1L antibody (human) reference gene CACTTGCCAGAGATCCAGAAG | Biolegio | Designed by PrimerQuest tool (https://eu.idtdna.com/site) | |
Reverse Oxa1L antibody (human) CACAGGGAGAATGAGAGGTTTATAG | Biolegio | Designed by PrimerQuest tool (https://eu.idtdna.com/site) | |
Power SYBRGreen PCR Master Mix | Thermo Fisher Scientific | 4368702 | |
FACS Tubes | Sarstedt | 551578 | |
MicroAmp Optical 96-Well Reaction Plate | Thermo Fisher Scientific | N8010560 | |
Corning 100mm TC-Treated Culture Dish | Corning | ||
Corning Costar cell culture plates 6 well | Corning | 3506 | |
Refrigerated Bench-Top Microcentrifuge | Eppendorf | 5415 R | |
Refrigerated Bench-Top Centrifuge Jouan CR3.12 | Jouan | 743205604 | |
NanoDrop Lite Spectrophotometer | Thermo Scientific | ND-LITE-PR | |
BD FACSCalibur Flow Cytometer | BD Bioscience | ||
QuantStudio 3 Real-Time PCR System | Thermo Fisher Scientific | A28567 |