Summary

单分子水平的高精度FRET用于生物分子结构测定

Published: May 13, 2017
doi:

Summary

本文介绍了单分子水平高精度FRET实验方案。此外,该方法可用于鉴定N-甲基-D-天冬氨酸(NMDA)受体的配体结合结构域中的三种构象状态。确定精确的距离是建立基于FRET实验的结构模型的第一步。

Abstract

这里介绍了如何在多参数荧光检测(MFD)模式下以单分子水平进行Förster共振能量转移(FRET)进行高精度间距距离测量的协议。 MFD最大化荧光的所有“尺寸”的使用,以减少光物理和实验伪像,并允许在刚性生物分子中以高达±1的精度测量间距距离。该方法用于鉴定N-甲基-D-天冬氨酸(NMDA)受体的配体结合结构域的三个构象状态,以解释配体结合时受体的活化。当将已知的结晶结构与实验测量结果进行比较时,对于更多的动态生物分子,他们认为不到3Å。收集覆盖生物分子的整体维度的一套距离约束将使得有可能提供动态生物分子的结构模型ES。

Introduction

结构生物学研究的一个基本目标是揭示生物分子机器的结构与功能之间的关系。生物分子( 例如,蛋白质和核酸)的第一个视觉印象发生在20世纪50年代,通过开发X射线晶体学1,2 。 X射线晶体学提供了由晶体包装约束的高分辨率静态结构信息。因此,X射线结构模型的固有不动性可以避免生物分子的动态性质,这是影响大多数生物学功能的因素3,4,5 。核磁共振(NMR) 6,7,8提供了解决水溶液中结构模型的问题的替代方案。一个很大的优势的NMR是其恢复生物分子和构象集合的内在动力学特性的能力,有助于阐明结构,动力学和功能之间的内在关系3,4,5。然而,由样品量和大量样品限制的NMR对较大系统需要复杂的标记策略。因此,迫切需要开发结构生物学中的替代方法。

历史上,Förster共振能量转移(FRET) 9在结构生物学中没有发挥重要作用,因为FRET提供了低精度距离测量的误解。该协议的目的是重新审视FRET确定纳米尺度的距离,使得这些距离可用于构建生物分子的结构模型。第一个实验验证通过测量各种长度的聚合物作为“光谱尺”,1967年10号由Stryer在FRET效率方面的依赖性。在2005年的单分子水平上完成了类似的实验11 。聚脯氨酸分子被证明是非理想的,因此后来使用双链DNA分子12 。这打开了精确距离测量的窗口和使用FRET识别生物分子的结构特性的想法。

当干涉距离范围为〜0.6-1.3 R 0时,FRET最佳,其中R 0是Förster距离。对于在单分子FRET实验中使用的典型荧光团, R 0为〜50。通常,与其他方法相比,FRET在解决和区分结构和动态的能力方面提供了许多优势异质系统:(i)由于荧光的最终灵敏度,单分子FRET实验13,14,15,16可以通过直接计数和同时表征其各个成员的结构来解析异质集合。 (ii)复合反应途径可以在单分子FRET研究中直接解密,因为不需要整体的同步。 (iii)FRET可以及时访问跨越十多年的各种时间领域,涵盖各种各样的生物相关动态。 (iv)FRET实验可以在体外体内的任何溶液条件下进行 。 FRET与荧光显微镜的组合允许直接在活细胞中研究分子结构和相互作用15,16 </ sup> 17,18,19 甚至高精度20 。 (v)FRET可以应用于几乎任何大小的系统( 例如,聚脯氨酸低聚物21,22,23,24,Hsp90 25 ,HIV逆转录酶26和核糖体27 )。 (vi)最后,包含生物分子的所有维度的距离网络可用于导出静态或动态分子的结构模型18,28,29,30,31,32,33,34 参考“> 35,36,37。

因此,单分子FRET光谱可用于导出足够精确的距离以用于距离限制结构建模26 。这可以通过利用八维尺寸的荧光信息( 激发光谱,荧光光谱,各向异性,荧光寿命,荧光量子产率等)的多参数荧光检测(MFD)28,38,39,40,41,42的优点,宏观时间,荧光强度和荧光团之间的距离)精确而准确地提供距离限制。另外,脉冲交错激励(PIE)与MFD组合(PIE-MFD) 42以监测直接激发受体荧光并选择由含有1:1供体 – 受体化学计量的样品产生的单分子事件。典型的PIE-MFD设置使用连接到共聚焦显微镜主体的双脉冲交错激光激光器,其中光子检测在不同光谱窗口和偏振特性中分为四个不同的通道。更多细节见图1

重要的是要注意,FRET必须结合计算方法来实现与FRET结果26,30相符合的类原子结构模型。目前的协议的目的不在于使用FRET衍生距离来构建结构模型的相关方法。然而,这些方法已经与其他技术( 例如,小角度X射线散射)结合使用或电子顺磁共振),产生了整合结构生物学领域43,44,45,46。目前的目标是为FRET作为结构生物学的定量工具铺平道路。作为示例,该方法用于鉴定N-甲基-D-天冬氨酸(NMDA)受体的配体结合结构域(LBD)中的三种构象状态。最终的目标是克服上述限制,并通过提供高精度的测量距离将FRET引入用于结构测定生物分子的综合方法。

Protocol

PBS缓冲液制备和腔室处理注意:执行湿化学实验时,请穿上实验室外套和一次性手套。对齐激光时请使用防护眼镜。 PBS缓冲液制备 将4.5g Na 2 HPO 4,0.44g NaH 2 PO 4和3.5g NaCl溶于400mL蒸馏水中。确保pH为7.5,并通过高压灭菌在液体循环1小时(取决于高压釜系统)对溶液灭菌。 取15 mL PBS溶液,并与0.1 g木炭混合。通过使用0.2…

Representative Results

在使用MFD设置(激光线:485nm在60μW和640nm,23μW,5.1节)的典型smFRET实验中,将荧光样品稀释至低皮摩尔浓度(10 -12M = 1pM)并放置在共焦显微镜中,亚纳秒激光脉冲激发标记分子通过激发体自由扩散。典型的共焦体积<4毫升(fL)。在这样低的浓度下,一次只能检测到一个分子。通过目标收集来自标记分子的发射荧光,并使用针孔进行空间过滤。此步骤定义了有效的共聚…

Discussion

在这项工作中,提出了使用PIE-MFD单分子FRET实验以高精度对准,校准和测量干涉距离的方案。通过仔细校准所有仪器参数,可以提高测量距离的精度并达到Angstrom精度。为了做到这一点,使用各种多维直方图来分析和识别人群以进一步表征。使用平均宏观时间来验证测量样品的稳定性,可以基于化学计量参数来校正供体和受体光漂白并选择FRET群体。然而,受体的光物理性质可以根据标签的位置而?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

VJ和HS承认NIH R01 GM094246支持VJ。 HS承认克莱姆森大学创意咨询计划和克莱姆森大学光学材料科学和工程技术中心的创业资金。该项目还得到了墨西哥湾沿岸联盟跨学科生物科学培训凯克中心(NIGMS Grant No.1 T32GM089657-05)的训练奖学金和Schissler基金会DD普通人类疾病转化研究奖学金的支持。内容完全是作者的责任,并不一定代表美国国立卫生研究院的官方观点。

Materials

charcoal Merck KGaA K42964486 320
syringe filter Fisherbrand 09-719C size: 0.20um
chambered coverglass Fisher Scientific 155409 1.5 borosilicate glass, 8 wells
microscope cover glass Fisher Scientific 063014-9 size: 24X60-1.5
Nuclease free water Fisher Scientific 148859 nuclease free
tween-20 Thermo Scientific 28320 10% solution of Polysorbate 20
acceptor DNA strand (High FRET) Integrated DNA Technologies 178124895 5´-d(CGG CCT ATT TCG GAG TTG TAA ACA GAG AT(Cy5)C GCC TTA AAC GTT CGC CTA GAC TAG TCC AAG TAT TGC)
acceptor DNA strand (Low FRET) Integrated DNA Technologies 177956424 5´-d(CGG CCT ATT TCG GAG TTG TAA ACA GAG ATC GCC TT(Cy5)A AAC GTT CGC CTA GAC TAG TCC AAG TAT TGC)
donor DNA strand Integrated DNA Technologies 177951437 5´ -d(GCA ATA CTT GGA CTA GTC TAG GCG AAC GTT TAA GGC GAT CTC TGT TT(Alexa488)A CAA CTC CGA AAT AGG CCG)
DNA strand (No FRET) Integrated DNA Technologies 5´ -d(CGG CCT ATT TCG GAG TTG TAA ACA GAG ATC GCC TTA AAC GTT CGC CTA GAC TAG TCC AAG TAT TGC)
thermal cycler Eppendorf E6331000025 nexus gradient
Alexa Fluor 488 C5 Maleimide Thermo Scientific A10254 termed cyan-green fluorophore in the manuscript
Alexa Fluor 647 C2 Maleimide Thermo Scientific A20347 termed far-red fluorophore in the manuscript
Rhodamine 110 Sigma-Aldrich 83695-250MG
Rhodamine 101 Sigma-Aldrich 83694-500MG
LB Broth, Miller Fisher Scientific BP1426 For culture of E. coli
Ampicillin Sigma-Aldrich A0166 Used at 100 ug/ml final concentration in selective LB medium to maintain plasmid selection
Tetracyline  Calbiochem 58346 Used at 12.5 ug/ml final concentration in selective LB medium to maintain gor (flutathione reductase) mutation in Origami B(DE3) strains to facilitate disulfide bond oxidation
Kanamycin Fisher Scientific BP906-5 Used at 15 ug/ml final concentration in selective LB medium to maintain trxB (rhioredoxin reductase) mutation in B(DE3) stains to facilitate disulfide bond oxidation
Origami B(DE3) Competent Cells Millipore 70837-3 Competent E. coli cells for expression of protein with disulfide bridges
Isopropyl-β-D-thiogalactopyranoside (IPTG) Fisher Scientific BP1755 For induction of E. coli protein expression
HiTrap Chelating HP GE Life Sciences 17-0409-01 For Large-scale FPLC Purification of His-tagged protein
Imidazole Sigma-Aldrich 56749
Ni-NTA Agarose  Qiagen 30210
PD-10 Desalting Column GE Life Sciences 17-0851-01
AktaPurifier GE Life Sciences 28406264 FPLC Instrument
Dialysis tubing Spectrum labs 132562 15 kD MWCO 24 mm Flath width, 10 meters/roll
Dichroics Semrock FF500/646-Di01-25×36 500/646 BrightLight
50/50 Beam splitter polarizer Qioptiq Linos  G33 5743 000 10×10 film polarizer
Green pass filer Chroma ET525/50m ET525/50m 25 mm diameter mount
Red pass filter Chroma ET720/150m ET720/150m 25 mm diameter mount
Power Meter ThorLabd PM200
UV-Vis spectrophotometer Varian Cary300Bio
Fluorolog 3 fluorometer Horiba FL3-22-R3
Fluorohub TCSPC controller Horiba Fluorohub-B TCSPC electronics for ensemble measurements
NanoLed 485L Horiba 485L Blue diode laser
NanoLed 635L Horiba 635L Red diode laser
Olympus IX73 Microscope Olympus IX73P2F Microscope frame
PMA 40 Hybrid Detector PicoQuant GmbH 932200, PMA 40 Optimized for green detection
PMA 50 Hybrid Detector PicoQuant GmbH 932201, PMA 50 Optimized for ed shifter sensitivity
485nm laser PicoQuant GmbH LDH-D-C-485
640nm laser PicoQuant GmbH LDH-D-C-640
Hydraharp 400 and TTTR acqusition software PicoQuant 930021 Picosecond event timer and Time Correlated Single Photon Coutning Unit, includes TTTR acqusition software
SEPIA II SLM 828 and SEPIA software PicoQuant 910028 Laser driver for picosecond pulses , includes SEPIA software controller.
computer Dell optiplex 7010 cpu: i7-3770 ram:16GB
FRET Positioning and Screening (FPS) software Heinrich Heine Unviersity It include the Accesibel Volume clacualtor available at http://www.mpc.hhu.de/software/fps.html
MFD suite Heinrich Heine Unviersity It includes the BIFL software package Paris; Margarita for visualization of the multiparameter hisotrams, and Probability Distribution Analysis software availabel at http://www.mpc.hhu.de/software/software-package.html

Riferimenti

  1. Kendrew, J. C. Architecture of a protein molecule. Nature. 182 (4638), 764-767 (1958).
  2. Kendrew, J. C., et al. A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature. 181 (4610), 662-666 (1958).
  3. Henzler-Wildman, K., Kern, D. Dynamic personalities of proteins. Nature. 450 (7172), 964-972 (2007).
  4. Henzler-Wildman, K. A., et al. A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature. 450 (7171), 913-927 (2007).
  5. Henzler-Wildman, K. A., et al. Intrinsic motions along an enzymatic reaction trajectory. Nature. 450 (7171), 838 (2007).
  6. Kline, A. D., Wuthrich, K. Secondary structure of the alpha-amylase polypeptide inhibitor tendamistat from Streptomyces tendae determined in solution by 1H nuclear magnetic resonance. J. Mol. Biol. 183 (3), 503-507 (1985).
  7. Williamson, M. P., Havel, T. F., Wuthrich, K. Solution conformation of proteinase inhibitor IIA from bull seminal plasma by 1H nuclear magnetic resonance and distance geometry. J. Mol. Biol. 182 (2), 295-315 (1985).
  8. Havel, T. F., Wuthrich, K. An evaluation of the combined use of nuclear magnetic resonance and distance geometry for the determination of protein conformations in solution. J. Mol. Biol. 182 (2), 281-294 (1985).
  9. Förster, T. Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann.Phys. 437 (1), 55-75 (1948).
  10. Stryer, L., Haugland, R. P. Energy transfer: a spectroscopic ruler. Proc Natl Acad Sci U S A. 58 (2), 719-726 (1967).
  11. Schuler, B., Lipman, E. A., Steinbach, P. J., Kumke, M., Eaton, W. A. Polyproline and the "spectroscopic ruler" revisited with single-molecule fluorescence. Proc Natl Acad Sci U S A. 102 (8), 2754-2759 (2005).
  12. Wozniak, A. K., Schroder, G. F., Grubmuller, H., Seidel, C. A., Oesterhelt, F. Single-molecule FRET measures bends and kinks in DNA. Proc Natl Acad Sci U S A. 105 (47), 18337-18342 (2008).
  13. Orrit, M., Bernard, J. Single Pentacene Molecules Detected by Fluorescence Excitation in a p-Terphenyl Crystal. Phys. Rev. Lett. 65 (21), 2716-2719 (1990).
  14. Weiss, S. Fluorescence spectroscopy of single biomolecules. Science. 283 (5408), 1676-1683 (1999).
  15. Ha, T., et al. Probing the interaction between two single molecules: Fluorescence resonance energy transfer between a single donor and a single acceptor. Proc.Natl.Acad.Sci.USA. 93, 6264-6268 (1996).
  16. Michalet, X., Weiss, S., Jager, M. Single-molecule fluorescence studies of protein folding and conformational dynamics. Chem. Rev. 106 (5), 1785-1813 (2006).
  17. Jares-Erijman, E. A., Jovin, T. M. FRET imaging. Nat. Biotechnol. 21 (11), 1387-1395 (2003).
  18. Sakon, J. J., Weninger, K. R. Detecting the conformation of individual proteins in live cells. Nat Methods. 7 (3), 203-205 (2010).
  19. Stahl, Y., et al. Moderation of Arabidopsis root stemness by CLAVATA1 and ARABIDOPSIS CRINKLY4 receptor kinase complexes. Curr. Biol. 23 (5), 362-371 (2013).
  20. Fessl, T., et al. Towards characterization of DNA structure under physiological conditions in vivo at the single-molecule level using single-pair FRET. Nucleic Acids Res. 40 (16), e121 (2012).
  21. Stryer, L. Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47, 819-846 (1978).
  22. Schuler, B., Lipman, E. A., Steinbach, P. J., Kumke, M., Eaton, W. A. Polyproline and the “spectroscopic ruler” revisited with single-molecule fluorescence. Proc. Natl. Acad. Sci. USA. 102 (8), 2754-2759 (2005).
  23. Best, R. B., et al. Effect of flexibility and cis residues in single-molecule FRET studies of polyproline. Proc Natl Acad Sci USA. 104 (48), 18964-18969 (2007).
  24. Hoefling, M., et al. Structural heterogeneity and quantitative FRET efficiency distributions of polyprolines through a hybrid atomistic simulation and Monte Carlo approach. PLoS One. 6 (5), e19791 (2011).
  25. Hellenkamp, B., Wortmann, P., Kandzia, F., Zacharias, M., Hugel, T. Multidomain structure and correlated dynamics determined by self-consistent FRET networks. Nat Methods. , (2016).
  26. Kalinin, S., et al. A toolkit and benchmark study for FRET-restrained high-precision structural modeling. Nat. Meth. 9 (12), 1218-1225 (2012).
  27. Hickerson, R., Majumdar, Z. K., Baucom, A., Clegg, R. M., Noller, H. F. Measurement of internal movements within the 30 S ribosomal subunit using Forster resonance energy transfer. J. Mol. Biol. 354 (2), 459-472 (2005).
  28. Margittai, M., et al. Single-molecule fluorescence resonance energy transfer reveals a dynamic equilibrium between closed and open conformations of syntaxin 1. Proceedings of the National Academy of Sciences. 100 (26), 15516-15521 (2003).
  29. Weninger, K., Bowen, M. E., Chu, S., Brunger, A. T. Single-molecule studies of SNARE complex assembly reveal parallel and antiparallel configurations. Proc. Natl. Acad. Sci. USA. 100 (25), 14800-14805 (2003).
  30. Brunger, A. T., Strop, P., Vrljic, M., Chu, S., Weninger, K. R. Three-dimensional molecular modeling with single molecule FRET. J. Struct. Biol. 173 (3), 497-505 (2011).
  31. Choi, U. B., et al. Single-molecule FRET-derived model of the synaptotagmin 1-SNARE fusion complex. Nat. Struct. Mol. Biol. 17 (3), 318-324 (2010).
  32. DeRocco, V., Anderson, T., Piehler, J., Erie, D. A., Weninger, K. Four-color single-molecule fluorescence with noncovalent dye labeling to monitor dynamic multimolecular complexes. BioTechniques. 49 (5), 807-816 (2010).
  33. McCann, J. J., Zheng, L., Chiantia, S., Bowen, M. E. Domain orientation in the N-Terminal PDZ tandem from PSD-95 is maintained in the full-length protein. Structure. 19 (6), 810-820 (2011).
  34. McCann, J. J., et al. Supertertiary structure of the synaptic MAGuK scaffold proteins is conserved. Proc Natl Acad Sci USA. 109 (39), 15775-15780 (2012).
  35. Andrecka, J., et al. Nano positioning system reveals the course of upstream and nontemplate DNA within the RNA polymerase II elongation complex. Nucleic Acids Res. 37 (17), 5803-5809 (2009).
  36. Muschielok, A., et al. A nano-positioning system for macromolecular structural analysis. Nat Methods. 5 (11), 965-971 (2008).
  37. Muschielok, A., Michaelis, J. Application of the Nano-Positioning System to the Analysis of Fluorescence Resonance Energy Transfer Networks. J. Phys. Chem. B. 115 (41), 11927-11937 (2011).
  38. Renner, A., et al. High Precision FRET Reveals Dynamic Structures in the Drosophila Scaffold Protein Complex Stardust-DPATJ-DLin-7 Mediated by L27 Domains. Biophys. J. 106 (2), 256 (2014).
  39. Antonik, M., Felekyan, S., Gaiduk, A., Seidel, C. A. Separating structural heterogeneities from stochastic variations in fluorescence resonance energy transfer distributions via photon distribution analysis. The Journal of Physical Chemistry B. 110 (13), 6970-6978 (2006).
  40. Gaiduk, A., Kühnemuth, R., Antonik, M., Seidel, C. A. Optical Characteristics of Atomic Force Microscopy Tips for Single-Molecule Fluorescence Applications. ChemPhysChem. 6 (5), 976-983 (2005).
  41. Eggeling, C., Fries, J., Brand, L., Günther, R., Seidel, C. Monitoring conformational dynamics of a single molecule by selective fluorescence spectroscopy. Proceedings of the National Academy of Sciences. 95 (4), 1556-1561 (1998).
  42. Kudryavtsev, V., et al. Combining MFD and PIE for Accurate Single-Pair Förster Resonance Energy Transfer Measurements. ChemPhysChem. 13 (4), 1060-1078 (2012).
  43. Steven, A. C., Baumeister, W. The future is hybrid. J. Struct. Biol. 163 (3), 186-195 (2008).
  44. Cowieson, N. P., Kobe, B., Martin, J. L. United we stand: combining structural methods. Curr. Opin. Struct. Biol. 18 (5), 617-622 (2008).
  45. Boura, E., et al. Solution structure of the ESCRT-I complex by small-angle X-ray scattering, EPR, and FRET spectroscopy. Proc Natl Acad Sci USA. 108 (23), 9437-9442 (2011).
  46. Dominguez, C., Boelens, R., Bonvin, A. M. HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc. 125 (7), 1731-1737 (2003).
  47. Laible, M., Boonrod, K. Homemade site directed mutagenesis of whole plasmids. J Vis Exp. (27), (2009).
  48. Barker, K. . At the Bench: A Laboratory Navigator. , (2005).
  49. Coleman, J. A., Green, E. M., Gouaux, E. Thermostabilization, Expression, Purification, and Crystallization of the Human Serotonin Transporter Bound to S-citalopram. J Vis Exp. (117), e54792 (2016).
  50. Yates, L. A., Gilbert, R. J. C. Efficient Production and Purification of Recombinant Murine Kindlin-3 from Insect Cells for Biophysical Studies. J Vis Exp. (85), e51206 (2014).
  51. Li, Q., Richard, C. -. A., Moudjou, M., Vidic, J. Purification and Refolding to Amyloid Fibrils of (His)6-tagged Recombinant Shadoo Protein Expressed as Inclusion Bodies in E. coli. J Vis Exp. (106), e53432 (2015).
  52. Scopes, R. K. . Protein Purification: Principles and Practice. , (1993).
  53. Desalting Column Product booklet. GE Available from: https://www.gelifesciences.com/gehcls_images/GELS/Related%20Content/Files/1478781880316/litdoc52130800_20161110134421.pdf (2016)
  54. Lakowicz, J. R. . Principles of Fluorescence Spectroscopy. , (2007).
  55. Sindbert, S., et al. Accurate distance determination of nucleic acids via Forster resonance energy transfer: implications of dye linker length and rigidity. J. Am. Chem. Soc. 133 (8), 2463-2480 (2011).
  56. Technical Note. Time Tagged Time-Resolved Fluorescence Data Collection in Life Sciences. PicoQuant Available from: https://www.picoquant.com/images/uploads/page/files/14528/technote_tttr.pdf (2010)
  57. Elson, E. L., Magde, D. Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers. 13 (1), 1-27 (1974).
  58. Magde, D., Elson, E. L., Webb, W. W. Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers. 13 (1), 29-61 (1974).
  59. Felekyan, S., et al. Full correlation from picoseconds to seconds by time-resolved and time-correlated single photon detection. Rev. Sci. Instrum. 76 (8), 083104 (2005).
  60. Iyer, V., Rossow, M. J., Waxham, M. N. Peak two-photon molecular brightness of fluorophores is a robust measure of quantum efficiency and photostability. JOSA B. 23 (7), 1420-1433 (2006).
  61. Böhmer, M., Wahl, M., Rahn, H. -. J., Erdmann, R., Enderlein, J. Time-resolved fluorescence correlation spectroscopy. Chem. Phys. Lett. 353 (5), 439-445 (2002).
  62. Fries, J. R., Brand, L., Eggeling, C., Köllner, M., Seidel, C. A. M. Quantitative identification of different single molecules by selective time-resolved confocal fluorescence spectroscopy. The Journal of Physical Chemistry A. 102 (33), 6601-6613 (1998).
  63. Kühnemuth, R., Seidel, C. A. M. Principles of Single Molecule Multiparameter Fluorescence Spectroscopy. Single Mol. 2 (4), 251-254 (2001).
  64. Widengren, J., et al. Single-molecule detection and identification of multiple species by multiparameter fluorescence detection. Anal. Chem. 78 (6), 2039-2050 (2006).
  65. Sisamakis, E., Valeri, A., Kalinin, S., Rothwell, P. J., Seidel, C. A. Accurate single-molecule FRET studies using multiparameter fluorescence detection. Methods Enzymol. 475, 455-514 (2010).
  66. Kalinin, S., Felekyan, S., Antonik, M., Seidel, C. A. Probability distribution analysis of single-molecule fluorescence anisotropy and resonance energy transfer. The Journal of Physical Chemistry B. 111 (34), 10253-10262 (2007).
  67. Kask, P., et al. Two-dimensional fluorescence intensity distribution analysis: theory and applications. Biophys. J. 78 (4), 1703-1713 (2000).
  68. Traynelis, S. F., et al. Glutamate Receptor Ion Channels: Structure, Regulation, and Function. Pharmacol. Rev. 62 (3), 405-496 (2010).
  69. Furukawa, H., Gouaux, E. Mechanisms of activation, inhibition and specificity: crystal structures of the NMDA receptor NR1 ligand-binding core. EMBO J. 22 (12), 2873-2885 (2003).
  70. Furukawa, H., Singh, S. K., Mancusso, R., Gouaux, E. Subunit arrangement and function in NMDA receptors. Nature. 438 (7065), 185-192 (2005).
  71. Dolino, D. M., Rezaei Adariani, ., Shaikh, S., A, S., Jayaraman, V., Sanabria, H. Conformational Selection and Submillisecond Dynamics of the Ligand-binding Domain of the N-Methyl-d-aspartate Receptor. J. Biol. Chem. 291 (31), 16175-16185 (2016).

Play Video

Citazione di questo articolo
Ma, J., Yanez-Orozco, I. S., Rezaei Adariani, S., Dolino, D., Jayaraman, V., Sanabria, H. High Precision FRET at Single-molecule Level for Biomolecule Structure Determination. J. Vis. Exp. (123), e55623, doi:10.3791/55623 (2017).

View Video