G4 Resolvase1 liga-se a (G4) estruturas G-quadruplex com mais apertados afinidade reportada para uma proteína de ligação e G4 representa a maior parte da actividade de desenrolamento-G4 ADN em células HeLa. Nós descrevemos um protocolo romance que aproveita a afinidade e atividade desenrolamento dependente de ATP G4-Resolvase1 para purificar especificamente G4R1 recombinante cataliticamente ativo.
estruturas de ácidos nucleicos de ordem superior chamado G-quadruplexes (G4S, estruturas G4) podem formar em regiões ricas em guanina de ADN e ARN e são altamente termicamente estável. Existem> 375.000 sequências formando-G4 putativos no genoma humano, e são enriquecidos em regiões promotoras, regiões não traduzidas (UTRs), e dentro da repetição telomérica. Devido ao potencial para estas estruturas de afectar os processos celulares, tais como a replicação e transcrição, a célula tem evoluído enzimas para geri-los. Uma tal enzima é uma resolvase G4 (G4R1), que foi co-bioquimicamente caracterizado pelo nosso laboratório e Nagamine et al. e verificou-se ligam-se muito bem para ambas G4-ADN-ARN e G4 (K d no intervalo de baixo pM). G4R1 é a fonte da maioria da actividade de resolução de G4 em lisados de células HeLa, e desde então sido implicada como desempenhando um papel no metabolismo dos telómeros, linfa desenvolvimento, a transcrição do gene, a hematopoiese, e vigilância imunitária. A capacidade de eftemente expressar e purificar cataliticamente activa G4R1 é de importância para os laboratórios interessados em ganhar mais conhecimento sobre a interação cinética das estruturas G4 e enzimas resolver G4. Aqui, nós descrevemos um método detalhado para a purificação de G4R1 recombinante (rG4R1). O procedimento descrito incorpora a purificação baseada em afinidade tradicional de uma enzima de histidina marcada com C-terminal expressa em bactérias com codões optimizados humanos com a utilização da capacidade de se ligar e rG4R1 relaxar G4-ADN para purificar a enzima altamente activo numa ATP etapa de eluição dependente. O protocolo também inclui um passo de controlo de qualidade em que a actividade enzimática da rG4R1 é medida examinando a capacidade da enzima purificada para relaxar G4-ADN. Um método é também descrito que permite a quantificação de rG4R1 purificado. adaptações alternativas deste protocolo são discutidos.
estruturas G4 são estruturas secundárias de ácido nucleico altamente estáveis que se formam dentro de regiões ricas em guanina de ADN e ARN. Estruturas G4 são estabilizadas através de interacções de ligação de Hoogsteen-e coordenadas de ligação dentro da cavidade central com catiões monovalentes (isto é. De K + e Na +), que contribuem de forma significativa para a estabilidade térmica notável de estruturas G4 1, 2. Bioinformática estudos anteriores sugeriram que o genoma humano contém> 375.000 "potencial de formação de motivos G4" 3, 4. Estimativas mais recentes sugerem que o número de motivos G4 é maior por um factor de 2-5 5, enquanto outro estudo prevê 716,310 potenciais sequências formando-G4 distintos no genoma humano 6. G4-forming sequências são evolutivamente conservados e não disperso aleatoriamente emdo genoma. Motivos G4 são enriquecidos em regiões codificantes dos genes, e para cima de 40% de todos os promotores de genes contêm G4 motivos 7. Interessantemente, o grau de enriquecimento de motivos G4 em um gene tem sido demonstrada para sugerir a função do gene. Por exemplo, os proto-oncogenes e genes envolvidos no desenvolvimento têm significativamente maior enriquecimento de estruturas G4 do que os genes supressores de tumor 8, 9.
Com altas estabilidades térmicas, uma presença quase onipresente em todo o genoma, e o potencial de afetar significativamente principais processos celulares, não é surpreendente descobrir que a célula evoluiu enzimas para gerir essas estruturas. Uma tal enzima é G4 Resolvase1 (G4R1; também chamado RHAU e DHX36), o que foi caracterizado como a fonte da maioria da actividade resolver G4-ADN em tetramolecular (HeLa) 10 células humanas. Desde então, tem sido demonstrado THAt G4R1 liga firmemente e cataliticamente desenrola G4-DNA tetramolecular e unimolecular e G4-RNA com as mais apertadas KDs relatada para uma proteína de ligação G4 11, 12, 13. Além disso, a actividade de resolução de G4 do G4R1 tem sido implicada numa ampla gama de processos bioquímicos e celulares, incluindo a dos telómeros / telomerase Biology 11, 14, 15, 16, transcrição e de emenda 17, 18, 19, 20, de desenvolvimento 21, hematopoiese 21 e imune regulação 22, 23. Com uma preponderância de sequências G4 especificamente situado ao longo do genoma e a diversidade p celularrocesses que G4R1 recentemente foi implicado por estar envolvido com, a capacidade de expressar e eficiente purificar altamente ativa rG4R1 será da maior importância para a elucidação dos mecanismos bioquímicos e comportamentos desta proteína.
Aqui, nós demonstramos uma expressão nova e esquema de purificação (Figura 1) que tira proveito da, atividade de resolução de G4 dependente de ATP rG4R1 para isolar eficiente enzima ativa. Este esquema pode ser adaptado para purificar outras enzimas de ácidos nucleicos dependentes de ATP para o qual o produto da reacção enzimática não é mais um substrato para a ligação, como é o caso para G4R1.
Este protocolo representa uma expressão, purificação e quantificação regime altamente eficiente para o isolamento do produto do gene DHX36, G4-Resolvase1 (G4R1, também chamado RHAU e DHX36) (Figura 1). Este protocolo utiliza dois passos de purificação: His-tag de purificação por afinidade em esferas de afinidade de cobalto e purificação enzimática em grânulos-G4-ADN conjugado. O último passo é o único que aproveita a afinidade apertado, alta especificidade e atividade catalítica desenr…
The authors have nothing to disclose.
Gostaríamos de agradecer aos nossos fontes de financiamento, incluindo uma oferta generosa da Fundação Ware (a JPV), Os Institutos Nacionais de HealthGrant T32-CA079448 (a PJS), e os fundos de arranque Ball State University (para PJS). Os financiadores não tiveram nenhum papel no desenho do estudo, coleta de dados e análise, decisão de publicar ou preparação do manuscrito.
TriEx4-DHX36 plasmid | Addgene | 68368 | |
Rosetta2(DE3)plysS competent cells | Novagen | 71403-4 | |
S.O.C medium | Thermo Fisher Scientific | 15544034 | |
Difco Terrific Broth | Becton Dickinson | 243820 | |
Glycerol | Sigma-Aldrich | G5516 | |
Chloramphenicol | Sigma-Aldrich | C1919 | 35 µg/ml in bacterial plates/large cultures |
Carbenicillin (plant cell culture tested) | Sigma-Aldrich | C3416 | 50 µg/ml in bacterial plates/large cultures |
Isopropyl β-D-1-thiogalactopyranoside (IPTG) | Sigma-Aldrich | I6758 | |
Lysozyme (from chicken egg white) | Sigma-Aldrich | L6876 | |
1 M Tris-HCl pH=8 | Universal Scientific Supply Co. | 1963-B | or From standard source |
1 M Tris-HCl pH=7 | Universal Scientific Supply Co. | 1966 | or From standard source |
1.5 M Tris-HCl, pH=8.8 | For casting resolving gel (for protein quantitation gel); From standard source | ||
1 M Tris-HCl, pH=6.8 | For casting stacking gel (for protein quantitation gel); From standard source | ||
1 M Tris-Acetate, pH=7.8 | Universal Scientific Supply Co. | 1981 | or From standard source |
70% Ethanol | From standard source | ||
Magnesium chloride (1 M solution) | Life Technologies | AM9530G | |
Sodium chloride | Sigma-Aldrich | S7653 | |
Sodium acetate | Sigma-Aldrich | S8750 | |
20x SSC | Universal Scientific Supply Co. | 1665 | or From standard source |
β-mercaptoethanol (2-BME) | Sigma-Aldrich | 63689 | |
Protease inhibitor cocktail | Sigma-Aldrich | P8849 | |
Leupeptin hemisulfate | Sigma-Aldrich | L8511 | |
Streptavidin paramagnetic beads | Promega | Z5482 | |
0.5 M EDTA, pH=8 | Universal Scientific Supply Co. | 0718 | or From standard source |
0.2 M EDTA, pH=6 | Universal Scientific Supply Co. | From standard source; initially adjust pH with NaOH, then adjust pH back down with HCl. | |
A-lactalbumin (Type 1 from bovine milk) | Sigma-Aldrich | L5385 | |
Cobalt metal affinity beads | Clonetech | 635502 | |
L-Histidine | Sigma-Aldrich | H8000 | |
Acetic acid, glacial | Fisher Scientific | A38-500 | |
Adenosine 5'-Triphosphate (from bacterial source) | Sigma | A7699 | |
40% acrylamide/Bis solution (37.5:1) | Biorad | 161-0148 | |
Glycine | Sigma-Aldrich | 50046 | to make protein gel running buffer (192 mM glycine, 25 mM Tris Base, 0.1% SDS) |
10 % Sodium dodecyl sulfate | Universal Scientific Supply Co. | 1667 | to make protein gel running buffer (192 mM glycine, 25 mM Tris Base, 0.1% SDS); or From standard source |
10x TBE | Sigma-Aldrich | 11666703001 | or From standard source |
Tris base | Fisher Scientific | BP152-1 | to make protein gel running buffer (192 mM glycine, 25 mM Tris Base, 0.1% SDS); From standard source |
TEMED | Sigma-Aldrich | 411019 | |
Ammonium persulfate | Sigma-Aldrich | A3678 | |
Broad Range Protein MW markers | Promega | V8491 | |
Biotinylated Z33 oligo ("Z33-Bio") | Oligos Etc | 5’ AAA GTG ATG GTG GTG GGG GAA GGA TTC GGA CCT-biotin 3’ | |
TAMRA-Z33 oligo ("Z33-TAM") | Oligos Etc | 5’ TAMRA-AAA GTG ATG GTG GTG GGG GAA GGA TTC GGA CCT 3’ | |
Fluor-coated TLC plate | Life Technologies | AM10110 | |
Ficoll | Sigma-Aldrich | F2637 | 30% in H2O |
Coomassie R-250 | Sigma-Aldrich | 27816 | |
Methanol | Fisher Scientific | A412 | |
Multiband UV lamp | Capable of emitting UV light at 365 nm | ||
Table-top centrifuge (with swinging bucket rotor) | Capable of being cooled to 4 °C | ||
Microcentrifuge | Capable of being cooled to 4 °C | ||
Digital Sonfier | Branson | Or equivalent capable of delivering sonication pulses (30% amplitude, 2s ON 2s OFF) | |
50 °C water bath | For formation of Z33 into quadruplex | ||
37 °C incubator for bacteria | For bacterial transformations and initial overnight growth of large cultures of Rosetta2 E. coli transformed with TriEx4-DHX36 | ||
37 °C/14 °C shaking incubator for bacteria | For growth and protein induction of large cultures of Rosetta2 E. coli transformed with TriEx4-DHX36 | ||
Spectrophotometer | capable of reading OD600; capable of reading oligomer concentrations based on base sequence (such as Biorad SmartSpec 3000) | ||
Thermometer | From standard source | ||
PCR strip tubes | From standard source | ||
15- and 50-ml centrifuge tubes (polypropylene) | From standard source | ||
Microcentrifuge tubes (2.0 ml) | From standard source | ||
500 ml centrifuge bottles (polypropylene) | Thermo Scientific | 3141-0500 | |
Standard array of pipet tips and serological pipettes | From standard source | ||
Gel-loading tips | From standard source | ||
Automatic repeating pipette | For quick aliquoting of rG4R1; From standard source | ||
Thermal cycler | From standard source | ||
Liquid Nitrogen | From standard source | ||
Dry ice | From standard source | ||
Laemlli sample buffer | Biorad | 161-0737 | |
Apparatus for running large slab gels | Biorad | We have used the Protean II xi cell apparatus from Biorad | |
Magnet | Life Technologies | 12301D | We use a magnet from One Lambda (Now a Thermo Fisher Scientific brand); and Life is also a subsidiary of Thermo, and thus the magnet listed here should be a suitable replacement |
Razor blades | From standard source | ||
Filter paper and funnel | From standard source | ||
Glass casserole dish | From standard source | ||
Orbital shaker | From standard source | ||
Kimwipes | From standard source | ||
Clear sheet protectors | From standard source | ||
Scanner and associated TWAIN software | From standard source | ||
Image analysis software | Such as Fuji Multiguage, or equivalent | ||
Microsoft Excel | Or equivalent |