Summary

油样品的相行为在炼油工艺条件的原位可视化

Published: February 21, 2017
doi:

Summary

This article describes a setup and method for the in situ visualization of oil samples under a variety of temperature and pressure conditions that aim to emulate refining and upgrading processes. It is primarily used for studying isotropic and anisotropic media involved in the fouling behavior of petroleum feeds.

Abstract

To help address production issues in refineries caused by the fouling of process units and lines, we have developed a setup as well as a method to visualize the behavior of petroleum samples under process conditions. The experimental setup relies on a custom-built micro-reactor fitted with a sapphire window at the bottom, which is placed over the objective of an inverted microscope equipped with a cross-polarizer module. Using reflection microscopy enables the visualization of opaque samples, such as petroleum vacuum residues, or asphaltenes. The combination of the sapphire window from the micro-reactor with the cross-polarizer module of the microscope on the light path allows high-contrast imaging of isotropic and anisotropic media. While observations are carried out, the micro-reactor can be heated to the temperature range of cracking reactions (up to 450 °C), can be subjected to H2 pressure relevant to hydroconversion reactions (up to 16 MPa), and can stir the sample by magnetic coupling.

Observations are typically carried out by taking snapshots of the sample under cross-polarized light at regular time intervals. Image analyses may not only provide information on the temperature, pressure, and reactive conditions yielding phase separation, but may also give an estimate of the evolution of the chemical (absorption/reflection spectra) and physical (refractive index) properties of the sample before the onset of phase separation.

Introduction

油样在一个宽的温度范围,压力和反应条件的相位行为的研究可以产生非常有用的信息,其处理各种饲料炼油厂的操作者。特别地,处理单元和线路由不受控制的形成焦炭或沉积物的结垢会严重影响生产(吞吐量的损失)和能量效率(在传热阻力增加)1,2,3。可能堵塞结垢物质可能需要清理的目的,这将具有高度的负面经济影响4关机的积累造成的。导电饲料的结垢倾向的评估可以是工艺条件5的优化和精炼流的配合非常有价值的。

我们已经制定了一个在原地在我们的实验室石油稳定性的分析器,以允许油样受炼油厂工艺条件的可视化。该装置依赖于由不锈钢制成的管件和装备有在底部密封的蓝宝石窗口一个专门设计的反应器中。该装置的主要原理是在温度和压力的期望范围的反应器内的样品,将所得交叉偏振反射的摄像的照明。虽然以前的相对于这种设置集中在热裂解过程模拟减粘裂化条件6,7,8,9(其不需要高压力),反应器的设计被翻修调查加氢下样品的行为(公布工作下催化裂化高H 2压力)和水热10(热在高预裂ssure蒸汽)的条件。因此,该设备,以便在20-450℃的温度范围和0.1-16兆帕压力范围内进行操作,以维持这两个450°C和16兆帕最长为6小时的反应时间的能力进行了修订。

分析在样品的下温度,压力和反应条件的特定范围的可视信息的第一级是确定样品是否为单相或多相。这个系统是独特的,因为它允许不透明各向同性材料的可视化,并且不限于在其他工作中11所描述的各向异性材料的可视化。而样品的结垢倾向的主要指标是滴沉积出大量液体的倾向;气 – 液,液 – 液,液 – 固和更复杂的相行为可以观察到。然而,有价值的信息,也可以从液体的视觉演化,因为它仍然坎萃取ogeneous(单相)。特别是,图像的亮度是相关的折射率和样品的消光系数,而样品的颜色是在可见光范围内的光谱信息(380-700纳米)的子集,其可以是用作其化学9的描述符。

Protocol

注意:在进行高温高压条件下的实验时,包括利用工程控制(H 2限流器,压力调节器和破裂盘总成)和个人防护设备(安全眼镜,耐高温手套使用所有适当安全守则,实验室外套,全长裤,封闭趾鞋)。使用前咨询的所有相关材料安全数据表(MSDS)。进行微反应器装载和清理在通风橱中,因为这些步骤涉及使用有害的挥发性有机溶剂(甲苯和二氯甲烷)。 注意:安?…

Representative Results

阿萨巴斯卡减压渣油的视觉进化代表沥青质的重质原油样品和沥青减压渣油样品的热裂解条件下的行为的。然而,使用不同的样品和/或不同温度,压力,或反应条件可以产生各种各样的相行为。对应于热裂解实验上在435℃下和P 个大气压 (N 2)中给出在图3中,而图4示出了温度的实验过程中的演化的最终设定点条件的阿萨巴斯卡?…

Discussion

该议定书中的关键步骤

在协议中的第一个关键步骤是确保金属对蓝宝石密封的完整性,特别是当试验是在压力下进行。因此,并行性,光滑度,和密封表面的清洁度应该仔细检查,以及渗漏试验应彻底。由于蓝宝石的断裂模量是温度14的递减函数,加厚蓝宝石窗口应该在高压和高温下使用工作。作为一个指导原则,8个毫米厚蓝宝石窗口都在我们的实验旨在模拟…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

The authors acknowledge Daniel Palys for supplying Figure 12 and for his assistance in managing laboratory supplies.

Materials

Sapphire window, C-plane, 3mm thick – 20 mm diam., Scratch/Dig: 80/50 Guild Optical Associates
C-seal American Seal & Engineering 31005
Type-K thermocouple Omega KMQXL-062U-9 
Ferrule (1/16") Swagelok SS-103-1 Inserted for creating a clearance gap between the magnet and the window surface
Coil Heater OEM Heaters K002441
Temperature controller Omron E5CK
Inverted microscope Zeiss Axio Observer.D1m Require cross-polarizer module
Toluene, 99.9% HPLC Grade Fisher Catalog # T290-4 Harmful, to be handled in fume hood
Methylene chloride, 99.9% HPLC Grade Fisher Catalog # D143-4 Harmful, to be handled in fume hood
Acetone, 99.7 Certified ACS Grade Fisher Catalog # A18P-4

Riferimenti

  1. Gray, M. R. . Upgrading Petroleum Residues and Heavy Oils. , (1994).
  2. Wiehe, I. A. . Process Chemistry of Petroleum Macromolecules. , (2008).
  3. Rahimi, P. M., Teclemariam, A., Taylor, E., deBruijn, T., Wiehe, I. A. Thermal Processing Limits of Athabasca Bitumen during Visbreaking Using Solubility Parameters. Heavy Hydrocarbon Resources, ACS Symposium Series, Volume 895. , (2005).
  4. Wiehe, I. A., Kennedy, R. J. Application of the Oil Compatibility Model to Refinery Streams. Energy Fuels. 14 (1), 60-63 (2000).
  5. Rahimi, P., Gentzis, T., Cotté, E. Investigation of the Thermal Behavior and Interaction of Venezuelan Heavy Oil Fractions Obtained by Ion-Exchange Chromatography. Energy Fuels. 13 (3), 694-701 (1999).
  6. Bagheri, S. R., Gray, M. R., McCaffrey, W. C. Influence of Depressurization and Cooling on the Formation and Development of Mesophase. Energy Fuels. 25 (12), 5541-5548 (2011).
  7. Bagheri, S. R., Gray, M. R., Shaw, J., McCaffrey, W. C. In Situ Observation of Mesophase Formation and Coalescence in Catalytic Hydroconversion of Vacuum Residue Using a Stirred Hot-Stage Reactor. Energy Fuels. 26 (6), 3167-3178 (2012).
  8. Bagheri, S. R., Gray, M. R., McCaffrey, W. C. Depolarized Light Scattering for Study of Heavy Oil and Mesophase Formation Mechanisms. Energy Fuels. 26 (9), 5408-5420 (2012).
  9. Laborde-Boutet, C., Dinh, D., Bender, F., Medina, M., McCaffrey, W. C. In Situ Observation of Fouling Behavior under Thermal Cracking Conditions: Hue, Saturation and Intensity Image Analyses. Energy Fuels. 30, 3666-3675 (2016).
  10. Dinh, D. . In-Situ Observation of Heavy-Oil Cracking using Backscattering Optical Techniques. MSc Thesis. , (2015).
  11. Rahimi, P., et al. Investigation of Coking Propensity of Narrow Cut Fractions from Athabasca Bitumen Using Hot-Stage Microscopy. Energy Fuels. 12 (5), 1020-1030 (1998).
  12. Hanbury, A. Constructing cylindrical coordinate colour spaces. Pattern Recognition Letters. 29 (4), 494-500 (2008).
  13. Gonzalez, R. C., Woods, R. E. . Digital Image Processing, Third Edition. , (2008).
  14. Wachtman, J. B., Maxwell, L. H. Strength of Synthetic Single Crystal Sapphire and Ruby as a Function of Temperature and Orientation. J. Am. Ceram. Soc. 42 (9), 432-433 (1959).
  15. Kaye, G. W. C., Laby, T. H. . Tables of physical and chemical constants / originally compiled by G.W.C. Kaye and T.H. Laby ; now prepared under the direction of an editorial committee. , (1995).
  16. Malitson, I. H., Dodge, M. J. Refractive Index and Birefringence of Synthetic Sapphire. J. Opt. Soc. Am. 62 (11), 1405 (1972).
  17. Buckley, J. S., Hirasaki, G. J., Liu, Y., Von Drasek, S., Wang, J. X., Gill, B. S. Asphaltene Precipitation and Solvent Properties of Crude Oils. Pet. Sci. Technol. 16 (3-4), 251-285 (1998).
  18. Perrotta, A., McCullough, J. P., Beuther, H. Pressure-Temperature Microscopy of Petroleum-Derived Hydrocarbons. Prepr. Pap. Am. Chem. Soc., Div. Pet. Chem. 28 (3), 633-639 (1983).

Play Video

Citazione di questo articolo
Laborde-Boutet, C., McCaffrey, W. C. In Situ Visualization of the Phase Behavior of Oil Samples Under Refinery Process Conditions. J. Vis. Exp. (120), e55246, doi:10.3791/55246 (2017).

View Video