この研究では、海洋細菌Vibrio anguillarumを用いて、ナノ物質などの新たな汚染物質を含む汚染物質の生態毒性を評価する新しいプロトコルについて説明します。この方法は、6時間の曝露後に、細菌の培養可能性を50%低下させる濃度であるLC 50または死亡率の測定を可能にする。
細菌は生態系の重要な構成要素であり、微生物の共同体の変化は生物地球化学サイクリングおよび食物網に重大な影響を及ぼす可能性がある。微生物に基づく毒性試験は、比較的迅速で、再現性があり、安価であり、倫理的問題に関連していないため、広く使用されている。ここでは、海洋細菌Vibrio anguillarumの生物学的応答を評価するための生態毒性学的方法について説明します。この方法は、環境試料だけでなく、ナノ粒子などの新しい汚染物質を含む化学化合物の急性毒性を評価する。終点は、有毒物質への暴露による細菌の培養可能性の低下( すなわち、複製およびコロニーを形成する能力)である。この減少は、一般的に死亡率と呼ぶことができる。この試験により、LC 50 、すなわち細菌を50%減少させる濃度であるコロニーをコロニーを形成しながら積極的に複製させることが可能になる6時間の暴露。培養可能な細菌をコロニー形成単位(CFU)でカウントし、「死亡率」を評価し、対照と比較する。この研究では、硫酸銅(CuSO 4 )の毒性を評価した。明確な用量反応関係が観察され、3回の独立した試験の後、平均LC 50は1.13mg / Lであった。このプロトコールは、微生物を用いた既存の方法と比較して、より広い範囲の塩分に適用可能であり、着色/濁ったサンプルには制限がない。それは、曝露媒体として生理食塩水を使用し、調査された汚染物質と増殖培地の可能性のある干渉を回避する。 LC 50の計算は、海洋環境の生態毒性評価に一般的に適用される他のバイオアッセイとの比較を容易にします。
生態毒性バイオアッセイは、生態系に及ぼす物理的、化学的、生物学的ストレッサーの影響を統合し、標準的な生物学的モデルを用いて化学物質または環境サンプルの毒性を評価する。生態系の複雑さのため、生態毒性リスクアセスメントは、異なる栄養段階の生物を含む一連のバイオアッセイを検討する必要があります。実験動物の毒性試験は高価で時間がかかり、倫理的に疑わしいものです。現在の欧州の法律の枠組みで報告されているように、動物試験を制限し、代替的なアプローチ( 例えば、バクテリアおよび非脊椎動物の動物について)を開発することの重要な課題は、EU動物防疫指令、第7回改正EUの化粧品指令、およびREACH。
甲殻類、魚類、および藻類は、海洋環境における毒性測定のために主に使用されている1 。細菌は重要な成分です微生物群集への変化は、生物地球化学的循環および他の重要な生態系サービスに重大な影響を及ぼす可能性がある。微生物に基づく毒性試験は、比較的迅速で、再現性があり、安価であり、倫理的問題を引き起こさないため、人気が高まっています2 。この研究の目的は、環境汚染物質に暴露された海洋細菌Vibrio anguillarum ( Listonella anguillarum、 Vibrionaceae)の応答を評価するための生態毒性プロトコルを記述することである。
V.アンギララム(V. anguillarum)は、 極性鞭毛を有するグラム陰性の短い曲線状のロッド細菌(0.5×1.5μm)である。典型的には、汽水または塩水に見出され、約20の最適塩分および25〜30℃の最適温度を有する、耐塩性である。その普遍性とその重要な生態学的役割のために生物モデルとして選ばれました世界的に4 。 V. anguillarumのいくつかの血清型は、様々な海洋性または汽水性の魚種においてウイルス虫症を引き起こすことが知られている5,6 。このためには、実験のいくつかのステップで標準的な微生物学的手法が必要ですが、特別な安全装置や予防措置は必要ありません。提案された毒性試験プロトコルは、バクテリアの培養可能性( すなわち、複製能力およびコロニーを形成する能力)をエンドポイントとして使用し、LC 50(細菌を活発に複製およびコロニーを形成する50%の減少を引き起こす濃度)の決定を可能にする。 6時間の露出。 ビブリオでは、他の微生物と同様に、一般的に死亡率として示されているこの減少は、部分的には生存可能であるが非培養可能な(VBNC)段階の個体に起因する可能性がある7 。本研究では、この方法を適用して、硫酸銅(CuSO 4)、基準毒物である。
この方法は、ナノ物質などの汚染物質を含む汚染物質/化学物質の生態毒性評価のための適切な微生物ベースの試験を提供するために開発された。微生物に使用される既存の方法と比較してこのプロトコルの新規性は、主に暴露培地およびエンドポイントに関連する。事実、曝露は生理食塩水中で行われ、生物学的反応に影響を与えるかもしれない調査された汚染物質による増殖培地の干渉を回避する。エンドポイントは、細菌の培養可能性の低下であり、生存率/死亡率に基づいて、海洋/汽水環境での生態毒性スクリーニングに使用される他の急性エンドポイントと容易に比較することができる。さらに、このプロトコールは、 大腸菌 9で既に使用されている液体 – プレート – マイクロカウント技術を使用して、体積を減らし、したがって実験的な効果を減少させるort(詳細はプロトコルのステップ3.3と3.4を参照)。
この研究は、明確な用量 – 反応関係を示す、基準毒性物質であるCuSO 4の毒性効果を評価するために首尾よく適用された海洋細菌V. anguillarumによる新しいバイオアッセイを記載している。海洋細菌V. anguillarumは、耐塩性、遍在性、海洋生態系を代表するため、モデル生物として選ばれました。
試験は、広範囲の塩分値(5〜40)で行うことができ、微生物が試験全体の期間中容易に生存できる限り、曝露培地として生理食塩水および合成海水または天然海水を使用することができる。これにより、汽水環境や海洋環境など、さまざまな種類の試料の分析が可能になります。
暴露段階では、汚染物質8との干渉および生物学的応答への影響を避けるために増殖培地は必要ではない。 Theプロトコルは信頼性が高く、迅速で、コスト効率が高く、比較的容易です。液体 – プレートマイクロカウント9の手順は、小さな(サンプル)体積を使用する利点をもたらすが、これは高度の精度と堅牢性を意味する。 3つの独立した試行の結果および各治療の反復は、この方法の高い再現性を示す。生物学的モデルとしての細菌の使用、ならびにこの技術の適合性は、この手順の生態学的および環境的関連性を支持する。他の重要な技術的問題は、細菌接種物の調製における正確さおよび手順のいくつかのステップで必要とされる無菌性である。
提案された試験は、他の海洋生態毒性試験(24〜96時間)よりも迅速であり(6時間)、高等生物の使用に伴う倫理的問題を引き起こさない。さらに、基準毒物に関するデータは、急性期tで得られた値と同等のLC 50値を示す他の海洋生物10,11についての推定値であり、良好な感度を示している。細菌バイオアッセイの中で、 V.フィッシェリ発光阻害試験が最も一般的でよく標準化されている12 。このバイオアッセイは非常に迅速であり(15〜30分)、固相試料を試験するのに有効ですが、発光測定に干渉する着色サンプルや混濁サンプルの影響を受ける可能性があります。塩濃度は2%NaClを必要とする上述の試験の使用における制限要因である13 。これに対して、 V. anguillarumで提案された試験は、塩分濃度の幅広い範囲で手頃な結果をもたらし、濁ったまたは着色したサンプルに関する制限がなく、ルミネッセンス分析器に比べてより安価な装置を必要とする。我々の研究の結果とV. fisheri 14の文献で利用可能なものとの比較 は、ss = "xref"> 15,16は同等のEC 50値を示し、このバイオアッセイの有効性をさらに裏付けています。
このバイオアッセイは、微生物に現在利用可能な試験で使用される集団成長速度または酵素活性阻害の代わりに、一般に死亡率と呼ばれる細菌培養可能性の低下を評価する。 LC 50計算は、生存率/死亡率をエンドポイントとすることが多い海洋環境の生態毒性評価に一般的に適用される他のバイオアッセイとの比較を可能にします。この試験の信頼性と再現性を評価/確認し、その標準化と規制プロトコルでの使用をサポートするためには、校正訓練が緊急に必要です。
ナノマテリアルの使用の増加とその環境中への放出は、リスクアセスメントの必要性を示唆している17 。しかし、clasこれらの出現する汚染物質のための(環境に優しい)毒物学的アプローチは手頃な結果をもたらさないようであり、いくつかの適応が必要となる18 。この新しいバイオアッセイの特徴は、ナノ粒子の毒性評価へのその容易で有用な応用を可能にする。事実、異なる塩度でアッセイを実施する可能性は、異なるイオン強度(毒性に重大な影響を与える可能性のある環境パラメータ変数)下でのナノ粒子の挙動を説明する19 。さらに、有機物は毒性を高めることにより吸収を促進することができるため、生物学的利用率を低下させ、その毒性を低下させるため、増殖媒体と栄養素の使用は特に推奨されていない21 。
結論として、 Vibrio anguillarumのバイオアッセイはap海洋および汽水環境の状態の評価と同様に、古典的および新興の汚染物質のリスクアセスメントのためのツールを提供しています。
The authors have nothing to disclose.
このプロジェクトは、「NanoBioTech ambiente salute」プロジェクトの資金提供を受けました。「Progetto 2:環境モニタリングのための環境モニタリング」( 「ナノバイオテクノロジー:環境と健康」プロジェクト2:環境。生態毒性のためのツールと方法 Regione Lazio-Consorzio HypatiaからLMに付与された「ナノ粒子のモニタリング」 )。 ARは、以前に引用されたプロジェクトの枠組みの下、Tor Vergata / Regione Lazio-Consorzio Hypatia大学からのポスドクグラントによって資金提供されました。 ISPRA-Tor Vergata大学(N。2015/52857)との合意は、施設の相互利用と研究者の交流を可能にした。
著者は、微生物世界への関心を高め、研究の改善を強力に助けるために、すべての微生物活動の保護者であるMaria Cristina Thaller教授に借りています。著者たちはAndreaTornambèとEriに感謝しているカマガラッティは、植物プランクトン生態学および生態毒性学のISPRAラボとの貴重な協力を得ました。
Vibrio anguillarum (strain AL 102, serotype O1) | Obtained from the laboratory collection of NOIFMA (Norway) | ||
Tryptic Soy Agar | Liofilchem | 610052 | Dehydrated Culture Media |
Tryptic Soy Broth growth medium | Liofilchem | 610053 | Dehydrated Culture Media |
CuSO4 ·5H2O | Sigma-Aldrich | 209198 | |
NaCl | Sigma-Aldrich | S-3014 | |
Name of Equipment | Company | Catalog Number | Comments/Description |
Biosafety Laminar Flow Hood | ESCO | ||
Incubator | Fratelli Galli | Mod. 2100 | |
Name of Software | Company | Catalog Number | Comments/Description |
Benchmark Dose Software | US EPA | Benchmark Dose 2.4.0 | 2012 |