The synthesis of a triphosphenium bromide salt is described and its use as a P+ transfer agent is outlined by reactions with an N-heterocyclic carbene and an anionic bisphosphine, yielding an NHC-stabilized P(I) cation and a P(I) containing zwitterion, respectively.
We present herein the optimized synthesis of a triphosphenium bromide salt. Apart from being a versatile metathesis reagent, this unusually stable low-valent-phosphorus-containing compound acts as a useful P+ transfer agent. Unlike traditional methods employed to access low-coordinate phosphorus species which usually require pyrophoric phosphorus-containing precursors (white phosphorus, Tris(trimethylsilyl)phosphine, etc.), or harsh reducing agents (alkali metals, potassium graphite, etc.), the current approach does not involve pyrophoric or explosive reagents and can be done on large scales (>20 g) in excellent yields by undergraduates with basic air-free synthetic training. The bromide counter ion is readily exchanged with other anions such as tetraphenyl borate (described herein) using typical salt metathesis reagents to obtain materials with desired properties and reactivities. The versatility of this P+ transfer approach is exemplified by the reactions of these triphosphenium precursors with an N-heterocyclic carbene and an anionic bisphosphine, each of which readily displace the neutral bisphosphine to give an NHC-stabilized phosphorus(I) cation and a phosphorus(I) containing zwitterion, respectively.
The chemistry of main group elements in unusually low oxidation or valence states has been an area of significant interest over the last two decades.1 Aside from the fundamental interest arising from their unique bonding and structure, such compounds often display reactivities that are very different from those of their more typical oxidation state counterparts. In this sense, they offer significant potential as reagents to build more complex main group-element containing materials.
A landmark class of low-valent phosphorus containing molecules are "triphosphenium" cations which were first reported by Schmidpeter in the 1980s.2 These ions feature a dicoordinate phosphorus(I) ion ligated by two phosphonio substituents, with the more stable variants built from a chelating framework.3,4 Our group has optimized the syntheses of triphosphenium halide salts5–7 and has demonstrated that these stable compounds are versatile P+ transfer agents that are useful for the controlled synthesis of phosphorus(I)-containing oligomers,8 zwitterions,9 and phosphamethine cyanine dyes.10,11 While the original syntheses of such compounds often involve dangerous phosphorus-containing reagents and/or highly reducing conditions, the controlled route we present is safe, P-atom efficient, and convenient. The method results in high purity materials which may be used as dyes, ligands for transition metal complexes and precursors for more complex phosphorus-containing species.
NOTE: Deuterated solvents were dried according to literature procedure when necessary, and all other solvents were dried over a series of Grubbs'-type columns12 and degassed prior to use. Potassium 1,2,4-tris(diphenylphosphino)cyclopentadiene [K][(Ph2P)3C5H2] and the N-heterocyclic carbene 1,3,4,5-tetramethylimidazole-2-ylidene (MeNHCMe) were synthesized according to literature procedures and the latter was sublimed prior to use.9,13 Cyclohexene was dried over CaH2, distilled and degassed prior to use. Acetonitrile-d3 (CD3CN) and dichloromethane-d2 (CD2Cl2) were dried over phosphorus pentoxide and degassed prior to use. Diatomaceous earth was dried in an oven at 150 ºC overnight prior to use. All other reagents were used as received.
1. Synthesis of [dppeP][Br]
2. Synthesis of [dppeP][BPh4]
3. Synthesis of [MeNHCMe2P][BPh4]
4. Synthesis of (Ph2P)C5H2(Ph2P)2P
A stable salt ([dppeP][Br]) containing a low valent phosphorus(I) source can be synthesized easily by the addition of PBr3 to diphenylphosphinoethane (dppe) in the presence of excess cyclohexene (Figure 1)6.
Upon work up of the reaction, 31P NMR spectra show the presence of a triplet signal that is significantly shielded at -220 ppm, and a doublet signal at 50 ppm. Strong coupling between the nuclei is observed on the order of 500 Hz (Figure 2).
Single crystals can be grown from concentrated acetonitrile or dichloromethane solutions and single crystal X-ray diffraction analysis reveals that [dppeP][Br] has an ion-separated structure with two formula units present in the asymmetric unit (Figure 4). The bromide ion may be exchanged for a less reactive anion, such as trifluoromethane sulfonate (triflate, OTf) or tetraphenylborate (BPh4). The 31P NMR spectrum of this product is almost identical to that of the starting material [dppeP][Br] (Figure 3).
Addition of [dppeP][BPh4] to a solution containing two equivalents of the carbene MeNHCMe results in displacement of the chelating bis-phosphine by the more strongly donating NHC ligands and generates the yellow phosphamethine cyanine dye [MeNHCMe2P][BPh4] (Figure 1). Because [MeNHCMe2P][BPh4] is soluble in THF but insoluble in diethyl ether, the latter is used to remove the bisphosphine byproduct, which is highly soluble in most solvents. Once separated by filtration, washed and dried, [MeNHCMe2P][BPh4] is obtained as an analytically pure yellow powder. The 31P NMR spectrum of this material dissolved in acetonitrile-d3 features a singlet signal at -113 ppm, which is significantly shielded relative to typical phosphaalkenes (cf. 31P NMR δ for P-mesityldiphenylmethylenephosphine = 233.06 ppm14) which is consistent with the phosphorus(I) assignment (Figure 5).
Likewise, the relatively long C-P bond lengths, the acute C-P-C angle and twisting of the heterocycles from the C-P-C plane observed in the crystal structure of [MeNHCMe2P][BPh4] (Figure 6) are also most consistent with the phosphorus(I) description. In addition to its potential applications as a dye, compounds such as [MeNHCMe2P][BPh4] have also proven to be useful ligands and reagents for the preparation of cationic phosphines of a type that are useful components in catalytic applications.15
The reaction of potassium 1,2,4-tris(diphenylphosphino)cyclopentadiene in a 1:1 stoichiometric ratio with [dppeP][Br] yields (Ph2P)C5H2(Ph2P)2P in quantitative yield (Figure 1)9. The only byproducts from this reaction, namely KBr and dppe, can be removed by filtrations in THF and diethyl ether/pentane respectively. The 31P NMR spectrum obtained from a concentrated solution of (Ph2P)C5H2(Ph2P)2P in CD2Cl2 (Figure 7) reveals the presence of a triplet signal at -174 ppm, attributable to the dicoordinate phosphorus(I) center, a singlet signal at -16.9 ppm for the Ph2P fragment on the backbone, and a doublet signal attributable to the two Ph2P groups that chelate the phosphorus(I) center.
This structure of this molecule obtained from a single crystal X-ray diffraction analysis is shown in Figure 8. Crystals can be grown via slow evaporation of a concentrated solution of DCM, THF, or even a dilute solution of diethyl ether. The ligand chemistry of (Ph2P)C5H2(Ph2P)2P is of interest because the molecule features three different types of donor sites with which it may interact with metals: it features a phosphine site, a phosphide-like site, and a cyclopentadienide site.9
Figure 1. Reaction of dppe with PBr3 and cyclohexene, [dppeP][BPh4] with MeNHCMe, and dppeP][Br] with [K][(Ph2P)3C5H2]. Please click here to view a larger version of this figure.
Figure 2. 31P (A), 1H (B), and 13C (C) NMR spectra of [dppeP][Br] collected in CD2Cl2 prepared as described in the protocol. Please click here to view a larger version of this figure.
Figure 3. 31P (A), 1H (B), 11B (C), and 13C (D) [dppeP][BPh4] collected in CD2Cl2 prepared as described in the protocol. Please click here to view a larger version of this figure.
Figure 4. Molecular Structure of [dppeP][Br] (A) and [dppeP][BPh4] (B). Please click here to view a larger version of this figure.
Figure 5. 31P (A), 1H (B), 11B (C) and 13C (D) NMR spectra of [MeNHCMe2P][BPh4] collected in CD3CN prepared as described in the protocol. Please click here to view a larger version of this figure.
Figure 6. Molecular Structure of [MeNHCMe2P][BPh4]. Please click here to view a larger version of this figure.
Figure 7. 31P (A), 1H (B), and 13C (C) NMR spectra of (Ph2P)C5H2(Ph2P)2P collected in CD2Cl2 prepared as described in the protocol. Please click here to view a larger version of this figure.
Figure 8. Molecular Structure of (Ph2P)C5H2(Ph2P)2P. Please click here to view a larger version of this figure.
Crystal structures and multi-nuclear NMR (31P, 1H, and 13C) were obtained for all products reported to confirm connectivity. Electrospray-ionization mass spectrometry was used to confirm presence of the cations and elemental analysis was used to confirm analytical purity of the samples.
It is imperative that all reactions are done in an air-free and dry environment to ensure that no unexpected by-products or decomposition products are formed. Using a slight excess of dppe as well as an excess (10 equivalents) of cyclohexene is necessary, to ensure good yields of [dppeP][Br].
There are no major limitations of the techniques described herein. The ligand displacement reactions with [dppeP][Br] are only limited to ligands of sufficient donor ability to displace the dppe from the [dppeP][Br] molecule. Notwithstanding, the significant advantage to this methodology is the controlled release of "P+" without the generation of unanticipated by-products or the use of harsh reagents. Thus, this methodology can be employed in the future to generate novel molecules containing PI moieties.
The authors have nothing to disclose.
The authors thank the Natural Sciences and Engineering Research Council (NSERC) of Canada and the Canada Foundation for Innovation (CFI) for funding and scholarship support.
bis(diphenyl)phosphino ethane (dppe) | Strem | 1663-45-2 | 98% Stored in gloved box, used as is. |
Anhydrous Dichloromethane (DCM) | Sigma Aldrich | 270997 | Purified through solvent purification system, or standard methods |
Anhydrous Cyclohexene | Sigma Aldrich | 29240 | Dried over calcium hydride and distilled. |
Phosphorus Tribromide (PBr3) | Sigma Aldrich | 157783 | 99% Stored in glove box, used as is. Air sensitive |
Anyhydrous Tetrahydrofuran (THF) | Sigma Aldrich | 401757 | Purified through solvent purification system, or standard methods |
Methylene Chloride-D2 (CD2Cl2) | Sigma Aldrich | DLM-23-25 | Dried over phosphorus pentoxide, vacuum transferred or distilled |
Acetonitrile | Alfa Aesar | 5/8/1975 | Stored in glove box, used as is |
Sodium Tetraphenylborate | Sigma Aldrich | T25402 | Stored in glove box, used as is |
Anyhydrous Diethyl Ether | Sigma Aldrich | 673811 | Purified through solvent purification system, or standard methods |
Anhydrous Pentane | Sigma Aldrich | 236705 | Purified through solvent purification system, or standard methods |