Summary

إعداد rAAV9 إلى بإفراط أو ضربة قاضية الجينات في قلوب ماوس

Published: December 17, 2016
doi:

Summary

In this manuscript, a method to prepare recombinant adeno-associated virus 9 (rAAV9) vectors to manipulate gene expression in the mouse heart is described.

Abstract

السيطرة على التعبير أو نشاط جينات معينة من خلال تقديم عضلة القلب من المواد الجينية في نماذج الفئران يسمح التحقيق في وظائف الجينات. الإمكانات العلاجية في قلب كما يمكن تحديدها. هناك أساليب محدودة في الجسم الحي تدخل الجزيئي في قلب فأر. وقد استخدمت المؤتلف فيروس الغدة المرتبطة (rAAV) هندسة الجينوم المستندة كأداة أساسية في الجسم الحي التلاعب الجيني القلب. وتشمل المزايا المحددة لهذه التكنولوجيا عالية الكفاءة، والدقة العالية، وانخفاض معدل التكامل الجيني، الحد الأدنى المناعية، والحد الأدنى المرضية. هنا، يتم وصف إجراءات تفصيلية لبناء، حزمة، وتنقية ناقلات rAAV9. حقن تحت الجلد rAAV9 إلى الجراء حديثي الولادة النتائج في التعبير القوي أو ضربة قاضية كفاءة من هذا الجين (ق) من الفائدة في قلب فأر، ولكن ليس في الكبد والأنسجة الأخرى. باستخدام القلب-specifiتم الحصول ج TnnT2 المروج والتعبير عالية من الجين GFP في القلب. بالإضافة إلى ذلك، استهداف وتثبيط مرنا في القلب عندما كان يستخدم لrAAV9-U6-shRNA. العمل معرفة التكنولوجيا rAAV9 قد يكون من المفيد إجراء تحقيقات القلب والأوعية الدموية.

Introduction

أصبحت السيطرة على التعبير أو نشاط جينات معينة في الأنظمة البيولوجية المختلفة استراتيجية قيمة في دراسة وظيفة الجين 1. وسيلة مباشرة لتحقيق هذا الهدف هو التلاعب تسلسل النوكليوتيدات وتوليد أليل متحولة. وعلى الرغم من اتخاذ دقيقة، والتغيرات التي تستهدف جينوم الخلايا الحية لا تزال ووممارسة كثيفة العمالة تستغرق وقتا طويلا، وقد فتحت تنمية قوية TALEN وكريسبر / Cas9 أدوات حقبة جديدة من تحرير الجينوم 2-5. وقد ركزت طريقة المخبرية الروتينية أكثر للتلاعب الجيني على إدخال المواد الجينية (السلطات الوطنية المعينة والرنا التي تحتوي على الترميز متواليات أو الرناوات siRNAs / shRNAs) إلى خلايا للتعبير أو ضربة قاضية الجين (ق) من الفائدة 1،6.

في كثير من الحالات، وعقبة رئيسية للتلاعب الجيني هو تسليم DNA، RNA، أو البروتين في الخلايا. وفيما يتعلق الدراسات في المختبر، transfecti كفاءةعلى أنظمة أنشئت في كثير من خطوط الخلايا المستزرعة. ومع ذلك، في نموذج الفأر على وجه الخصوص، في الجسم الحي توصيل الجينات هو أكثر تحديا. وهناك سلسلة من الحواجز من خارج وداخل الخلايا التي تحتاج إلى تجاوزها من أجل تحقيق امتصاص الخلوية كفاءة من الكواشف الخارجية. وتشمل عقبات إضافية لإزالة السريع وقصر مدة المواد 7،8 تسليمها. استراتيجية واحدة للتحايل على هذه القضايا هي استخدام ناقلات فيروسية باسم "ناقلات" أو "المركبات" في الجسم الحي توصيل الجينات. خصائص التنبيغ تطورت بشكل طبيعي من الفيروسات تسمح التنفيذ الفعال لجينة من الفائدة إلى خلايا 7،9،10. وقد تم تطوير أنواع عديدة من النواقل الفيروسية وتمكين مرونة في التلاعب الجيني المجراة في أنواع مختلفة من الخلايا والأعضاء في الفئران.

وتشمل أنظمة الفيروسية الأكثر شيوعا-الارتجاعي، الفيروسة البطيئة، اتش، والغدة المرتبطة الفيروسات (AAV) <sتصل> 11. الفيروسات هي الفيروسات RNA واحدة الذين تقطعت بهم السبل ويمكن إدخال المواد الجينية لجينوم الخلية المضيفة بطريقة مستقرة خلال تقسيم الإنقسامية، وتوفير إمكانات للتعبير مدى الحياة من الجينات transduced في الخلايا المستهدفة وأجهزة 12-14. ومع ذلك، وأنواع عديدة من الفيروسات تصيب فقط تقسيم الخلايا، ومدى فعاليتها في الخلايا غير تقسيم هو منخفض جدا 15. هذا يحد من فائدتها لتوصيل الجينات. الفيروسة البطيئة هو جنس من عائلة Retroviridae. مختلفة من الفيروسات الأخرى، ويمكن الفيروسة البطيئة تصيب كلا تقسيم الخلايا وعدم تقسيم واستخدمت على نطاق واسع لنقل الجين إلى ما بعد الإنقسامية وخلايا متباينة للغاية-16. دورة حياة الفيروسة البطيئة ينطوي أيضا على دمج الحمض النووي ناقلات في الجينوم المضيف. توصيل الجينات وبالتالي، الفيروسة البطيئة بوساطة تمكن مستقرة وطويلة الأجل التعبير عن العناصر الوراثية transduced 16-18. ومع ذلك، قد تمثل هذه الميزة الإلكترونية مزدوجالسيف جهاز 'في استخدام هذه الفيروسات لمعالجة التعبير الجيني، والتكامل من الحمض النووي ناقلات قد يؤدي إلى الطفرات إقحامي في الخلايا المضيفة ويمكن أن يسبب آثار مصطنع. اتش هو آخر يستخدم على نطاق واسع نظام توصيل الجينات. على عكس الفيروسات القهقرية وlentiviruses، الغدية هي غير متكامل ولا تتعارض مع سلامة الجينوم من الخلايا المضيفة 8،10،11،19. وبالإضافة إلى ذلك، يمكن الغدية transfect الحمض النووي في العديد من أنواع الخلايا، والإصابة ليست متوقفة على انقسام الخلايا النشطة 19. وهناك سمة أخرى مهمة من الغدية هو سهولة تنقية ناقلات، نظرا إلى أن ناقلات فيروسية القدرة على أن تتكرر 19،20. ومع ذلك، فإن التحذير الرئيسي لهذا النظام هو أن عدوى اتش يمكن أن تؤدي إلى استجابات مناعية قوية في الخلايا المستهدفة والأجهزة 19، وتقييد استخدامه في العديد من التحقيقات، لا سيما في الدراسات العلاج الجيني.

مقارنة مع هذه نوع مختلفالصورة من النواقل الفيروسية، والفيروسات المرتبطة الغدة-المؤتلف (rAAV) ويبدو أن نظام توصيل الجينات المثالي 21،22. فإنه يسلك الحد الأدنى المناعية والمرضية 23،24. وبالإضافة إلى ذلك، rAAV يصيب مجموعة واسعة من أنواع الخلايا، بما في ذلك الفاصل والخلايا غير الانقسام. في معظم الحالات، لا rAAV ليس الاندماج في الجينوم المضيف؛ وبالتالي، فإن مخاطر التغيرات الوراثية أو الجينوم غير مرغوب فيها في الخلايا المستهدفة منخفض 22.

في الآونة الأخيرة، وقد استخدمت أنظمة rAAV بنجاح لفي الجسم الحي تسليم البروتينات ترميز الحمض النووي، miRNAs، shRNAs، وكريسبر-gRNAs في الماوس عضلة القلب 23،25-29. وقد سهلت هذه المنهجية التحقيقات الأساسية والدراسات العلاج الجيني في مجال أبحاث القلب والأوعية الدموية. هنا، وإجراءات مفصلة لتوليد ناقلات rAAV9 أن بإفراط بكفاءة أو ضربة قاضية لجينات الفائدة في قلوب الماوس وصفه. وينص البروتوكول طريقة بسيطة وفعالة لالتلاعب التعبير الجيني القلب في الفئران نماذج تجريبية.

Protocol

تم تنفيذ جميع الخطوات المذكورة تحت البروتوكولات التي وافقت عليها لجنة السلامة الأحيائية واللجنة رعاية واستخدام الحيوان المؤسسي من مستشفى الأطفال في بوسطن. مستشفى بوسطن للأطفال ومرافق الماوس خالية من مسببات الأمراض مع ضوء / دورات الظلام التنظيم والتحكم في المناخ. ا?…

Representative Results

وترد الاستراتيجيات لبناء rAAV9 من rAAV9.cTNT :: GFP أو البلازميدات rAAV9.U6 :: shRNA في أرقام 1 و 2 على التوالي. كما الأمثلة، تم إنشاء ناقلات rAAV9 إلى بإفراط عن الجين GFP في قلوب الماوس. يحتوي البلازميد ينتج عن ذلك من cTNT :: الكاسيت GFP يحيط بها اثنان بالميد?…

Discussion

ومن المهم للحد غير مرغوب فيها إعادة التركيب بالميدان خلال بناء البلازميد. قبل إنشاء الفيروس، يجب على المرء دائما مراقبة سلامة بالميدان من البلازميدات AAV باستخدام الهضم تقييد والاغاروز الكهربائي للهلام. فمن المستحيل الحصول على 100٪ البلازميدات سليمة، ولكن نسبة إعادة …

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

We thank Dr. Zaffar Haque for careful reading of the manuscript. We thank Drs. Masaharu Kataoka and Gengze Wu for discussions and help. Work in the Wang lab is supported by the American Heart Association, Muscular Dystrophy Association, and NIH (HL085635, HL116919, HL125925).

Materials

Polyethylenimine, Linear (MW 25,000) Polysciences, Inc.  #23966-2
Tube, Polypropylene, 36.2 mL, 25 x 87 mm, (qty. 56) Beckman Coulter, Inc # 362183
Nuclease, ultrapure SIGMA #E8263-25KU
Density Gradient Medium(Iodixanol) SIGMA #D1556-250ML
Centrifugal Filter Unit with Ultracel-100 membrane EMD Millipore Corporation #UFC910008
Laboratory pipetting needle with 90° blunt ends,gauge 14, L 6 in., nickel plated hub SIGMA #CAD7942-12EA
Poloxamer 188 solution (Pluronic® F-68 solution) SIGMA P5556-100ML
Proteinase K SIGMA 3115828001
DNase I Roche 10104159001
Centrifuge machine Thermo Scientific 75004260
Centrifuge System Beckman Coulter 363118
Ultracentrifuge Beckman Coulter
DMEM medium Fisher Scientific SH30243FS
Fetal Bovine Serum  Atlanta Biologicals               S11150
rAAV9 vector Penn Vector Core P1967

Riferimenti

  1. Primrose, S. B., Twyman, R. . Principles of gene manipulation and genomics. , (2013).
  2. Doudna, J. A., Charpentier, E. The new frontier of genome engineering with CRISPR-Cas9. Science. 346, 1258096 (2014).
  3. Gaj, T., Gersbach, C. A., Barbas, C. F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31, 397-405 (2013).
  4. Hsu, P. D., Lander, E. S., Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 157, 1262-1278 (2014).
  5. Sander, J. D., Joung, J. K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32, 347-355 (2014).
  6. Szulc, J., Wiznerowicz, M., Sauvain, M. -. O., Trono, D., Aebischer, P. A versatile tool for conditional gene expression and knockdown. Nat. Methods. 3, 109-116 (2006).
  7. Nimesh, S., Halappanavar, S., Kaushik, N. K., Kumar, P. Advances in Gene Delivery Systems. BioMed Res. Int. 2015, 610342 (2015).
  8. Kamimura, K., Suda, T., Zhang, G., Liu, D. Advances in gene delivery systems. Pharm. Med. 25, 293-306 (2011).
  9. Thomas, C. E., Ehrhardt, A., Kay, M. A. Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet. 4, 346-358 (2003).
  10. Giacca, M., Zacchigna, S. Virus-mediated gene delivery for human gene therapy. J. Control Release. 161, 377-388 (2012).
  11. Witlox, M., Lamfers, M., Wuisman, P., Curiel, D., Siegal, G. Evolving gene therapy approaches for osteosarcoma using viral vectors: review. Bone. 40, 797-812 (2007).
  12. De Miguel, M. P., Cheng, L., Holland, E. C., Federspiel, M. J., Donovan, P. J. Dissection of the c-Kit signaling pathway in mouse primordial germ cells by retroviral-mediated gene transfer. Proc. Natl. Acad. Sci. USA. 99, 10458-10463 (2002).
  13. Nagano, M., Shinohara, T., Avarbock, M. R., Brinster, R. L. Retrovirus-mediated gene delivery into male germ line stem cells. FEBS Lett. 475, 7-10 (2000).
  14. Scharfmann, R., Axelrod, J. H., Verma, I. M. Long-term in vivo expression of retrovirus-mediated gene transfer in mouse fibroblast implants. Proc. Natl. Acad. Sci. USA. 88, 4626-4630 (1991).
  15. Katz, R. A., Greger, J. G., Skalka, A. M. Effects of cell cycle status on early events in retroviral replication. J. Cell. Biochem. 94, 880-889 (2005).
  16. Escors, D., Breckpot, K. Lentiviral vectors in gene therapy: their current status and future potential. Arch. Immunol. Ther. Exp. 58, 107-119 (2010).
  17. Mátrai, J., Chuah, M. K., VandenDriessche, T. Recent advances in lentiviral vector development and applications. Mol. Ther. 18, 477-490 (2010).
  18. Miyazaki, Y., Miyake, A., Nomaguchi, M., Adachi, A. Structural dynamics of retroviral genome and the packaging. Front. Microbiol. 2, 1-9 (2011).
  19. Douglas, J. T. Adenovirus-Mediated Gene Delivery. Gene Delivery to Mammalian Cells: Volume 2: Viral Gene Transfer Techniques. , 3-14 (2004).
  20. Armendáriz-Borunda, J., et al. Production of first generation adenoviral vectors for preclinical protocols: amplification, purification and functional titration. J. Biosci. Bioeng. 112, 415-421 (2011).
  21. Snyder, R. O. Adeno-associated virus-mediated gene delivery. J Gene Med. 1, 166-175 (1999).
  22. Samulski, R. J., Muzyczka, N. AAV-mediated gene therapy for research and therapeutic purposes. Annu. Rev. Virol. 1, 427-451 (2014).
  23. Kaplitt, M. G., et al. Long-term gene transfer in porcine myocardium after coronary infusion of an adeno-associated virus vector. Ann. Thorac. Surg. 62, 1669-1676 (1996).
  24. Kaspar, B. K., et al. Myocardial gene transfer and long-term expression following intracoronary delivery of adeno-associated virus. J. Gene. Med. 7, 316-324 (2005).
  25. Ding, J., et al. Trbp regulates heart function through microRNA-mediated Sox6 repression. Nat. Genet. 47, 776-783 (2015).
  26. Lin, Z., et al. Cardiac-specific YAP activation improves cardiac function and survival in an experimental murine MI model. Circ. Res. 115, 354-363 (2014).
  27. Wahlquist, C., et al. Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature. 508, 531-535 (2014).
  28. Carroll, K. J., et al. A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9. Proc. Natl. Acad. Sci. USA. 113, 338-343 (2016).
  29. Jiang, J., Wakimoto, H., Seidman, J., Seidman, C. E. Allele-specific silencing of mutant Myh6 transcripts in mice suppresses hypertrophic cardiomyopathy. Science. 342, 111-114 (2013).
  30. Gibson, D. G., et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods. 6, 343-345 (2009).
  31. Rychlik, W., Spencer, W., Rhoads, R. Optimization of the annealing temperature for DNA amplification in vitro. Nucleic Acids Res. 18, 6409-6412 (1990).
  32. Allocca, M., et al. Serotype-dependent packaging of large genes in adeno-associated viral vectors results in effective gene delivery in mice. J. Clin. Invest. 118, 1955-1964 (2008).
  33. Wu, Z., Yang, H., Colosi, P. Effect of genome size on AAV vector packaging. Mol. Ther. 18, 80-86 (2010).
  34. Li, J., Sun, W., Wang, B., Xiao, X., Liu, X. -. Q. Protein trans-splicing as a means for viral vector-mediated in vivo gene therapy. Hum. Gene Ther. 19, 958-964 (2008).
  35. Piras, B. A., O’Connor, D. M., French, B. A. Systemic delivery of shRNA by AAV9 provides highly efficient knockdown of ubiquitously expressed GFP in mouse heart, but not liver. PLoS One. 8, e75894 (2013).
  36. Lovric, J., et al. Terminal differentiation of cardiac and skeletal myocytes induces permissivity to AAV transduction by relieving inhibition imposed by DNA damage response proteins. Mol. Ther. 20, 2087-2097 (2012).

Play Video

Citazione di questo articolo
Ding, J., Lin, Z., Jiang, J., Seidman, C. E., Seidman, J. G., Pu, W. T., Wang, D. Preparation of rAAV9 to Overexpress or Knockdown Genes in Mouse Hearts. J. Vis. Exp. (118), e54787, doi:10.3791/54787 (2016).

View Video