Summary

Desenvolvimento de Células-Tronco de derivados de células T regulatórias antígeno específico da Contra Auto-imunidade

Published: November 08, 2016
doi:

Summary

We present here a method to develop functional antigen (Ag)-specific regulatory T cells (Tregs) from induced pluripotent stem cells (iPSCs) for immunotherapy of autoimmune arthritis in a murine model.

Abstract

As doenças autoimunes surgem devido à perda da auto-tolerância imunológica. As células T reguladoras (Tregs) são importantes mediadores da auto-tolerância imunológica. Tregs representam cerca de 5 – 10% da subpopulação maduro de células T CD4 + em ratinhos e humanos, com cerca de 1 – 2% dos Tregs que circulam no sangue periférico. Induzidas células estaminais pluripotentes (IPSCs) podem ser diferenciados em Tregs funcional, que tem um potencial para ser utilizados para terapias baseadas em células de doenças auto-imunes. Aqui, apresentamos um método para desenvolver antigénio (Ag) Tregs espec�icos de iPSCs (ou seja, IPSC-Tregs). O método baseia-se na incorporação do factor de transcrição Foxp3 e um receptor de células T específico de Ag-(TCR) em iPSCs e, em seguida, a diferenciação em células do estroma expressando Notch OP9 ligandos semelhante a delta (DL) e uma DL4. Seguindo diferenciação in vitro, o CPSP-Tregs expressam CD4, CD8, CD3, CD25, FoxP3, e Ag-TCR específico e são capazes de responder à estimulação Ag.Este método tem sido aplicado com sucesso para a terapia à base de células de artrite auto-imune num modelo murino. A transferência adoptiva destes específica iPSC-Ag-Tregs em artrite induzida por Ag (AIA) -bearing ratinhos tem a capacidade para reduzir a inflamação das articulações e inchaço e para prevenir a perda óssea.

Introduction

Autoimmune arthritis is a systemic disease characterized by hyperplasia of synovial tissue and progressive destruction of articular cartilage, bone, and ligaments1. The defective generation or function of Tregs in autoimmune arthritis contributes to chronic inflammation and tissue injury because Tregs play a crucial role in preventing the development of auto-reactive immune cells.

Manipulation of Tregs is an ideal strategy for the development of therapies to suppress inflammation in an Ag-dependent manner. For Treg-based immunotherapy, the specificity of the transferred Tregs is important for the treatment of ongoing autoimmunity2. To exhibit the suppressive activity, Tregs need to migrate and be retained at the afflicted region, which can be directed by the specificity of the TCR for the Ag at that location3. Although polyclonal Tregs may contain a small population containing this Ag specificity from their TCRs, the numbers of these Ag-specific Tregs are usually low. Consequently, cell-based therapies using polyclonal Tregs against autoimmune disorders require adoptive transfers of a large number of Tregs4,5. Because pluripotent stem cells (PSCs) have the ability to develop into any type of cell, Ag-specific PSC-Tregs may prove to be good candidates for Treg-based immunotherapy. Previous studies have shown the successful development of PSC-derived T cells, including Tregs6-8.

Here, we describe a protocol to develop Ag-specific iPSC-Tregs. We further describe a cell-based therapy of autoimmune arthritis in a murine model using such Tregs. This method is based upon genetically modifying murine iPSCs with Ag-specific TCRs and the transcriptional factor FoxP3. The engineered iPSCs then differentiate into Ag-specific Tregs on the OP9 stromal cells expressing Notch ligands DL1, DL4, and MHC-II (I-Ab) molecules in the presence of cytokines mFlt3L and mIL-7. These Ag-specific iPSC-Tregs can produce suppressive cytokines, such as TGF-β and IL-10, when stimulated with the Ag, and adoptive transfer of such Tregs has the ability to suppress AIA development in a murine model. The described protocol can be used to develop stem cell-derived Ag-specific Tregs for potential therapeutic interventions.

Protocol

Todos os experimentos com animais são aprovados pelo Colégio Universitário Estadual da Pensilvânia do Comitê Animal Care Medicine (IACUC protocolo # 45470) e são desenvolvidas em conformidade com as diretrizes da Associação para a Avaliação e Acreditação do Laboratório Animal Care. Cultura de Células 1. Stem Incubar a placa de 10 cm com 10 ml de gelatina a 0,1% durante pelo menos 30 min a 37 ° C (incubadora) de modo a revestir a placa. Remover gelatina do …

Representative Results

Como mostrado aqui, no dia 28, específico do Ag Tregs expressa substancialmente CD3 e TCR específico do Ag, dois marcadores de células T. A população de células CD3 + + TCRVβ5 expressa CD4. A maioria das células CD3 +, CD4 + TCRVβ5 + também expressa CD25, CD127, e CTLA-4, que são normalmente expressas em níveis elevados em que ocorre naturalmente (regs T nTregs) e em células T que expressam ectopicamente FoxP3…

Discussion

Neste protocolo, um passo crítico é a diferenciação in vitro de iPSCs transduzidas com genes / FoxP3 TCR. In vitro sinalização Notch induz o desenvolvimento para a linhagem de células T. Para diferenciar iPSCs em células CD4 + Foxp3 + Tregs, foram utilizadas as células B OP9-DL1 / DL4 / IA, que moléculas altamente expressa MHC II (IA b). A maioria dos iPSCs diferenciar-se em células T CD4 +. No entanto, após a expressão de TCR da super…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Este projecto foi financiado, em parte, sob bolsas de Institutos Nacionais de Saúde (R01AI121180, R21AI109239 e K18CA151798), a American Diabetes Association (1-16-IBS-281), e do Departamento de Pensilvânia da Saúde (tabaco fundos de liquidação) para JS

Materials

C57BL/6j mice Jackson Laboratory 664
B6.129S7 Rag1tm1Mom/J Jackson Laboratory 2216
Anti-CD3 (2C11) antibody BD Pharmingen 553058
Anti-CD28 (37.51) antibody BD Pharmingen 553295
Anti-CD4 (GK1.5) antibody Biolegend 100417
Anti-CD8 (53–6.7) antibody Biolegend 100714
Anti-CD25 (3C7) antibody Biolegend 101912
Anti-TCR-β (H57597) antibody Biolegend 109220
Anti-IL10 Biolegend 505010
Anti-TGFβ Biolegend 141402
DMEM Invitrogen ABCD1234
α-MEM Invitrogen A10490-01
FBS Hyclone SH3007.01
Brefeldin A Sigma B7651
Polybrene Sigma 107689
Genejammer Integrated science 204130
ACK Lysis buffer Lonza 10-548E
mFlt-3L peprotech 250-31L
mIL-7 peprotech 217-17
Gelatin Sigma G9391
Paraformaldehyde Sigma P6148-500G Caution: Allergenic, Carcenogenic, Toxic
Permeabilization buffer Biolegend 421002
mBSA Sigma A7906
Ova albumin Avantor 0440-01
CFA Difco 2017014
Tailveiner restrainer Braintree scientific RTV 150-STD

Riferimenti

  1. Firestein, G. S. Evolving concepts of rheumatoid arthritis. Nature. 423, 356-361 (2003).
  2. Ferraro, A., et al. Interindividual variation in human T regulatory cells. Proc Natl Acad Sci U S A. 111, E1111-E1120 (2014).
  3. Tang, Q., et al. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med. 199, 1455-1465 (2004).
  4. van Herwijnen, M. J., et al. Regulatory T cells that recognize a ubiquitous stress-inducible self-antigen are long-lived suppressors of autoimmune arthritis. Proc Natl Acad Sci U S A. 109, 14134-14139 (2012).
  5. Wright, G. P., et al. Adoptive therapy with redirected primary regulatory T cells results in antigen-specific suppression of arthritis. Proc Natl Acad Sci U S A. 106, 19078-19083 (2009).
  6. Schmitt, T. M., et al. Induction of T cell development and establishment of T cell competence from embryonic stem cells differentiated in vitro. Nat Immunol. 5, 410-417 (2004).
  7. La Motte-Mohs, R. N., Herer, E., Zuniga-Pflucker, J. C. Induction of T-cell development from human cord blood hematopoietic stem cells by Delta-like 1 in vitro. Blood. 105, 1431-1439 (2005).
  8. Lei, F., Haque, R., Weiler, L., Vrana, K. E., Song, J. T lineage differentiation from induced pluripotent stem cells. Cell Immunol. 260, 1-5 (2009).
  9. Lei, F., Haque, R., Xiong, X., Song, J. Directed differentiation of induced pluripotent stem cells towards T lymphocytes. J Vis Exp. , e3986 (2012).
  10. Lei, F., et al. In vivo programming of tumor antigen-specific T lymphocytes from pluripotent stem cells to promote cancer immunosurveillance. Cancer Res. 71, 4742-4747 (2011).
  11. Haque, R., et al. Programming of regulatory T cells from pluripotent stem cells and prevention of autoimmunity. J Immunol. 189, 1228-1236 (2012).
  12. Chi, V., Chandy, K. G. Immunohistochemistry: paraffin sections using the Vectastain ABC kit from vector labs. J Vis Exp. , (2007).
  13. Lu, L., et al. Critical role of all-trans retinoic acid in stabilizing human natural regulatory T cells under inflammatory conditions. Proc Natl Acad Sci U S A. 111, E3432-E3440 (2014).
  14. Wu, C., et al. Galectin-9-CD44 interaction enhances stability and function of adaptive regulatory T cells. Immunity. 41, 270-282 (2014).
  15. Di Stasi, A., et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med. 365, 1673-1683 (2011).
  16. Ramos, C. A., et al. An inducible caspase 9 suicide gene to improve the safety of mesenchymal stromal cell therapies. Stem Cells. 28, 1107-1115 (2010).
  17. Haque, R., Lei, F., Xiong, X., Wu, Y., Song, J. FoxP3 and Bcl-xL cooperatively promote regulatory T cell persistence and prevention of arthritis development. Arthritis Res Ther. 12, R66 (2010).
  18. van Loenen, M. M., et al. Mixed T cell receptor dimers harbor potentially harmful neoreactivity. Proc Natl Acad Sci U S A. 107, 10972-10977 (2010).
  19. Kim, Y. C., et al. Engineered antigen-specific human regulatory T cells: immunosuppression of FVIII-specific T- and B-cell responses. Blood. 125, 1107-1115 (2015).
  20. Himburg, H. A., et al. Pleiotrophin regulates the expansion and regeneration of hematopoietic stem cells. Nat Med. 16, 475-482 (2010).

Play Video

Citazione di questo articolo
Haque, M., Fino, K., Sandhu, P., Song, J. Development of Stem Cell-derived Antigen-specific Regulatory T Cells Against Autoimmunity. J. Vis. Exp. (117), e54720, doi:10.3791/54720 (2016).

View Video