Summary

对于在野外条件下评估种子萌发,休眠和死亡率可靠的方法

Published: November 06, 2016
doi:

Summary

在这里,我们提出了利用掩埋,标记种子带和四氮唑(TZ)的可行性试验在野外条件下评估种子存活,萌发和休眠的协议。

Abstract

We describe techniques for approximating seed bank dynamics over time using Helianthus annuus as an example study species. Strips of permeable polyester fabric and glue can be folded and glued to construct a strip of compartments that house seeds and identifying information, while allowing contact with soil leachate, water, microorganisms, and ambient temperature. Strips may be constructed with a wide range of compartment numbers and sizes and allow the researcher to house a variety of genotypes within a single species, different species, or seeds that have experienced different treatments. As opposed to individual seed packets, strips are more easily retrieved as a unit. While replicate packets can be included within a strip, different strips can act as blocks or can be retrieved at different times for observation of seed behavior over time. We used a high temperature glue gun to delineate compartments and sealed the strips once the seed and tags identifying block and removal times were inserted. The seed strips were then buried in the field at the desired depth, with the location marked for later removal. Burrowing animal predators were effectively excluded by use of a covering of metal mesh hardware cloth on the soil surface. After the selected time interval for burial, strips were dug up and seeds were assessed for germination, dormancy and mortality. While clearly dead seeds can often be distinguished from ungerminated living ones by eye, dormant seeds were conclusively identified using a standard Tetrazolium chloride colorimetric test for seed viability.

Introduction

该方法的总的目标是可靠地评估种子生存随时间在野外条件下。

土壤种子库的分布无论是在土壤表面,地面枯枝落叶层内,或在土壤剖面分散的,可行的但萌发的种子,可以瞬时或多年坚持1,2的储备。当类似的这里提出的种子埋藏方法应用于使用几种十余种了17年的研究中,可行的种子在许多测试3种被发现。种子休眠是种子发芽直到对幼苗存活的条件适当的组合出现4块。剩下的休眠可以让种子恶劣条件下生存,如冬季气温低,营养限制,或季节性干旱,直到休眠释放外部触发允许发芽。触发器休眠释放可以从曝光而异用f左延长冷,化合物愤怒,或通过摩擦或动物胃酸5接触的种皮物理攻击。作为发芽线索可以是属或种特异性,通常从过去自然选择造成的,适应不良种子萌发是发生在不适当的时间,并可能导致种子或秧苗死亡率或幼苗生长不良。而休眠已被分类成若干基于休眠解除( 例如 ,物理休眠,生理休眠)的机制的类型,6种子休眠保持在植物生物学的至少一个明白的主题。因此,现场研究,允许对个人的种子或相关的生态条件下的种子组的状态评估比那些单纯依靠在实验室标准发芽试验更高的解释力。

已知的种子特性研究开发能够洞察休眠机制。种子休眠的控制是合mplex,包括生理和形态遗传因素控制。虽然休眠机制的广度有充分的认识还有待阐明,一般的模式已经出现,涉及到两个植物激素赤霉素(GA)和脱落酸(ABA)7之间的反馈关系。在用于与生理组件到其休眠种子这个广义模型,GA用作信号为休眠解除,而ABA用于保持休眠状态。母体遗传效应以及母体的生长环境可以影响休眠等种子性状,如大小,通过母体产生的组织和发育信号8。母体产生的外部结构(或种子覆盖物)可以保持休眠状态,在生理线索相结合倍。由于母源种子覆盖物是由母体植物的基因控制的,他们可能不能反映种子的实际核基因组成。我们有我们ED农作物野生杂交的数组向日葵瘦果跨越梳理出种子的特性,这些孕妇与胎儿遗传效应9,10。因此,研究设计,包括品种多样,交叉型,或基因型可以收集有关信息生态与种子休眠,发芽和生存的基因。

种子萌发和生存的表型如何影响人口动态的一个重要例子可以在作物野杂区可以看出。栽培植物的驯化期间选择消除了大部分休眠并减少种子对生长期的外生存的能力。然而,在作物野杂区基因流动,或杂交,耕地和野生类型之间可以重新提出作物的等位基因(或基因变异)到一个野生种群,对种子库的潜在影响。培育和野生近缘种之间的杂交种作物野杂区发现的潜在可能拥有各种中间休眠表型,预计将种植( 冬季)11以外的生存条件,只有少数的表型。

这份手稿的目的是展示如何使用种子埋藏带的方法,我们可以评估发芽,休眠,以及一系列的种子种生存在不同的时间段进行调查野外条件下的自然变化。在我们的例子中,我们采用葵花籽从15作物野杂交类型,因为我们感兴趣的种子特性的孕产妇和胎儿遗传效应。

Protocol

1.从多个物种或品种单一控制杂交种子收集注意:使用野性,混合动力,和作物类型作为母体(制种)母种向日葵 (向日葵)内15个十字型本例使用的种子。 在生长季节结束后,收集袋标有成熟的种子头。从谷壳和地点种子标有标准格式( 即产妇点¯x父)亲十字型信封干净的种子。 散装种子一起在大信封用的种子等量从同等数量的同一父母跨类型。例如,从10跨…

Representative Results

交叉类型具有不同母体亲子和作物等位基因百分比( 表1)在整个去除日期不同百分比萌发,萌发的和死的种子(图2和3)。使用未萌发的种子TZ测试,我们发现一些真正的休眠的种子在第二去除(早春)( 表2),而由第三去除(春季)未萌发的种子都被认为是真正的休眠状态。 <p class="jove_content" fo:keep-together.within-page…

Discussion

在这里,我们目前使用的种子埋藏带在现场预选的时间段来观察种子发芽,休眠和多样化种子储备的死亡方法。用条而不是单个数据包在于(1)条和隔间建设创造了单个数据包的速度的优势;和(2)的难易程度和在一个运动中除去多个隔间没有遗漏的分组或无意地去除一个的危险的速度。作为两个这里介绍的实施例中除去的日期是在冬季当土壤硬和现场条件是冷,这种方法降低了劳动和人为错误?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

This work was supported by Biotech Risk Assessment Grant Program competitive grand no. 2006-39454-17438 to A. Snow, K. Mercer, and H. Alexander from the United States Department of Agriculture, National Institute of Food and Agriculture. Experiments using this method were conducted at and supported by the University of Kansas Field Station, a research unit of the Kansas Biological Survey and the University of Kansas. The authors would like to thank P. Jourdan and E. Regnier for helpful reviews on earlier versions of this manuscript. Additionally, this work was aided by the contributions of the staff at the University of Kansas Field Station, Waterman Farm at the Ohio State University (OSU), the USDA Ornamental Plant Germplasm Center at OSU, and the Seed Biology Lab in the Department of Horticulture and Crop Science at OSU, especially E. Renze, S. Stieve, A. Evans, and E. Grassbaugh, for technical support.

Materials

Small coin envelopes Any
Large coin envelopes Any
fine meshed polyester mosquito netting Any
high-temperature glue gun Any
high-temperature glue stick refills Any
Industrial permenant markers Any
plastic garden labels Any
scissors Any
Shovel Any
Metal mesh hardward cloth Any
Surveyor's flags, multiple colors Any
Wet newspaper Any
cooler Any
blotter paper Any
petri dishes Any
Temp. controlled growth chamber Any
razor blades Any
petri dishes Any
Tetrazolium chloride Any
water Any
heat incubator Any

Riferimenti

  1. Walck, J. L., Baskin, J. M., Baskin, C. C., Hidayati, S. N. Defining transient and persistent seed banks in species with pronounced seasonal dormancy and germination patterns. Seed Sci Res. 15 (3), 189-196 (2005).
  2. Alexander, H. A., Schrag, A. M. Role of soil seed banks and newly dispersed seeds in population dynamics of the annual sunflower. Helianthus annuus. J Ecol. 91, 987-998 (2003).
  3. Burnside, O. C., Wilson, R. G., Weiseberg, S., Hubbard, K. Seed longevity of 41 weed species buried 17 years in eastern and western. Weed Sci. 44 (1), 74-86 (1996).
  4. Baskin, C. C., Baskin, J. M. . Seeds: Ecology, biogeography, and evolution of dormancy and Germination. , (2001).
  5. Finch-Savage, W. E., Leubner-Metzger, G. Seed dormancy and the control of germination. New Phytol. 171, 501-523 (2006).
  6. Baskin, J. M., Baskin, C. C. A classification system for seed dormancy. Seed Sci Res. 14 (1), 1-16 (2004).
  7. Donohue, K., et al. Environmental and genetic influences on the germination of Arabidopsis thaliana in the field. Evolution. 54 (4), 740-757 (2005).
  8. Roach, D. A., Wulff, R. D. Maternal effects in plants. Ann Rev Ecol Syst. 18, 209-235 (1987).
  9. Pace, B. A., Alexander, H. M., Emry, J. D., Mercer, K. L. Seed fates in crop-wild hybrid sunflower: crop allele and maternal effects. Evol Appl. 8 (2), 121-132 (2015).
  10. Alexander, H. M., Emry, D. J., Pace, B. A., Kost, M. A., Sparks, K. A., Mercer, K. L. Roles of maternal effects and nuclear genetic composition change across the life cycle of crop-wild hybrids. Am J Bot. 101 (7), 1176-1188 (2014).
  11. Stewart, N. C., Matthew, J., Halfhill, D., Warwick, S. I. Transgene introgression from genetically modified crops into their wild relatives. Genetica. 4, 806-817 (2003).
  12. Mercer, K. L., Shaw, R. G., Wyse, D. L. Increased germination of diverse crop-wild hybrid sunflower seeds. Ecol Appl. 16, 845-854 (2006).
  13. Delouche, J. C., Still, T. W., Rapset, M., Lienhard, M. The tetrazolium test for seed viability. Mississippi Sta Uni Ag Exp Sta Techn Bull. 51, 1-63 (1962).
  14. Association of Official Seed Analysts. . Tetrazolium Testing Handbook. , (2010).
  15. Alexander, H. M., Emry, D. J., Pace, B. A., Kost, M. A., Sparks, K. A., Mercer, K. L. Roles of maternal effects and nuclear genetic composition change across the life cycle of crop-wild hybrids. Am J Bot. 10 (7), 1176-1188 (2014).
  16. Weiss, A. N., Primer, S. B., Pace, B. A., Mercer, K. L. Maternal effects and embryo genetics: germination and dormancy of crop-wild sunflower hybrids. Seed Sci Res. 23, 241-255 (2013).
check_url/it/54663?article_type=t

Play Video

Citazione di questo articolo
Pace, B. A., Alexander, H. M., Emry, D. J., Mercer, K. L. Reliable Method for Assessing Seed Germination, Dormancy, and Mortality under Field Conditions. J. Vis. Exp. (117), e54663, doi:10.3791/54663 (2016).

View Video