Протокол на месте водного синтеза бис (iminoguanidinium) лиганда и его использования в селективного разделения сульфата в представлен.
A simple and effective method for selective sulfate separation from aqueous solutions by crystallization with a bis-guanidinium ligand, 1,4-benzene-bis(iminoguanidinium) (BBIG), is demonstrated. The ligand is synthesized as the chloride salt (BBIG-Cl) by in situ imine condensation of terephthalaldehyde with aminoguanidinium chloride in water, followed by crystallization as the sulfate salt (BBIG-SO4). Alternatively, BBIG-Cl is synthesized ex situ in larger scale from ethanol. The sulfate separation ability of the BBIG ligand is demonstrated by selective and quantitative crystallization of sulfate from seawater. The ligand can be recycled by neutralization of BBIG-SO4 with aqueous NaOH and crystallization of the neutral bis-iminoguanidine, which can be converted back into BBIG-Cl with aqueous HCl and reused in another separation cycle. Finally, 35S-labeled sulfate and β liquid scintillation counting are employed for monitoring the sulfate concentration in solution. Overall, this protocol will instruct the user in the necessary skills to synthesize a ligand, employ it in the selective crystallization of sulfate from aqueous solutions, and quantify the separation efficiency.
Селективное разделение гидрофильных оксоанионы (например, сульфат, хромат, фосфат) из конкурентных водных растворов представляет собой фундаментальную задачу , которые имеют отношение к восстановлению окружающей среды, производства энергии и здоровья человека. 1,2 Сульфат , в частности , трудно извлечь из воды из – за его внутреннее нежелание пролить свою сферу гидратации и мигрируют в менее полярных средах. 3 Создание водной экстракции сульфата более эффективным , как правило , требует сложных рецепторов, которые трудно и утомительно для синтеза и очистки, часто с участием токсичных реагентов и растворителей. 4,5
Селективная кристаллизация предлагает простую , но эффективную альтернативу сульфату отделение от воды. 6-9 Хотя некоторые катионы металлов , такие как Ba 2+, Pb 2+, или Ра 2+ образуют очень нерастворимых солей сульфата, их использование в сульфатного отделения не всегда практично из-за их высокой ТОКСИгород, а иногда и низкой селективности. Использование органических лигандов, как сульфат осадителей использует структурного разнообразия и аменабельности разработать характерные для органических молекул. Идеальный органический лиганд для водной кристаллизации сульфата должен быть растворимым в воде, но образуют нерастворимые сульфатной соли или комплекса в относительно короткий промежуток времени и в присутствии высоких концентраций конкурирующих ионов. Кроме того, он должен быть легко синтезировать и утилизацию. Одним из таких лиганда 1,4-бензол-бис (iminoguanidinium) (BBIG), самоорганизующихся на месте из двух коммерчески доступных предшественников, терефталевый и хлорид aminoguanidinium, было недавно обнаружено , что чрезвычайно эффективными в водном разделении сульфатной. 10 Лиганд растворим в воде в виде хлорида, и селективно кристаллизуется с помощью сульфата в чрезвычайно нерастворимой соли, которую можно легко удалить из раствора простой фильтрацией. BBIG лиганд может быть извлечена путем депротонирования сqueous NaOH, и кристаллизация нейтральной бис-iminoguanidine, который может быть преобразован обратно в виде хлорида с помощью водного раствора HCl, и повторно использованы в другом цикле разделения. Эффективность этого лиганда в удаления сульфата из воды настолько велика, что мониторинг оставшейся концентрации сульфата в растворе больше не является тривиальной задачей, требующей более совершенную технику, которая позволяет точно измерять следовые количества аниона. Для этой цели, метили 35 S сульфат Tracer в сочетании с бета жидкостного сцинтилляционного счетчика использовался, метод широко используется в жидкость-жидкость экстрактивных разделений, и в последнее время продемонстрировали свою эффективность в сульфатной мониторинга кристаллизации. 8
Этот протокол демонстрирует один горшок синтез на месте лиганда BBIG и его кристаллизации в виде сульфатной соли из водных растворов в. Бывший синтез Ситу лиганда 11 также представлен в качестве совместногоnvenient способ производства больших количеств BBIG-Cl, которые могут храниться в кристаллической форме до готовой к использованию. Сульфат удаления из морской воды с использованием предварительно приготовленной BBIG-Cl лиганд затем продемонстрировал. И, наконец, использование 35 S-меченые сульфата и бета жидкостного сцинтилляционного счетчика для измерения концентрации сульфата в морской воде продемонстрировано. Этот протокол предназначен для обеспечения учебник для тех, кто в целом заинтересован в изучении использования селективной кристаллизации для разделения водной аниона.
Этот метод является довольно терпимы ко многим отклонений от письменной процедуры, что делает его весьма прочным. Существуют, однако, два важных шагов, которые необходимо соблюдать. Во-первых, лиганд BBIG-Cl должен быть как можно более чистым. Примеси не только влияют на кристаллизацию и р?…
The authors have nothing to disclose.
This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division. We thank the University of North Carolina Wilmington for providing the seawater.
Terephthalaldehyde | Sigma | T2207 | |
Aminoguanidinium Chloride | Sigma | #396494 | |
Sodium Sulfate | Sigma | #239313 | |
Barium Chloride | Sigma | #342920 | Highly Toxic |
Ethanol | Any | Reagent Grade (190 proof) | |
Sodium Hydroxide | EMD | SX0590-1 | |
Hydrochloric Acid | Sigma | #258148 | |
Filter Paper | Any | – | Any qualitative or analytical filter paper will work |
Syringe Filter (0.22 um) | Any | – | Nylon filter |
35S Labeled Sulfate | Perkin Elmer | NEX041005MC | |
Ultima Gold Scintillation Cocktail | Perkin Elmer | #6013329 | |
Polypropylene Vials | Any | – | |
Disposable Syringe (2-3 mL) | Any | – | Any disposable plastic syringe works |