Summary

生物膜启动对病毒感染的细胞测定细菌和真菌

Published: July 06, 2016
doi:

Summary

A method is described herein for the determination of inter-Kingdom association and competition (bacterial and fungal) for adherence to virus-infected HeLa cell monolayers. This protocol can be extended to multiple combinations of prokaryotes, eukaryotes, and viruses.

Abstract

整个分类王国,包括真菌,细菌,病毒等多种微生物相互作用的研究没有先前关于审查的微生物病毒的成员是如何影响这些病毒感染的宿主细胞随后微生物相互作用。与细菌和真菌病毒的同居主要是存在于口腔和生殖道的粘膜表面上。粘膜细胞,尤其是那些具有持久的慢性或持续性潜病毒感染,可以有一个显著对微生物的成员通过病毒改变数量和表达的受体的影响的类型。变形例在宿主细胞膜结构会导致正常菌群和机会致病菌的后续成员的以引发在生物膜的形成, ,粘附在第一步骤改变的能力。这项研究描述了BIOFIL的启动为HSV的效果定量和视觉检查方法S. m的形成(粘附) 金黄色葡萄球菌C.白色念珠菌

Introduction

人类微生物包括来自身体共享地理区域的多个分类王国不同的生物体。附着到细胞表面是在生物膜的形成,这是微生物定植过程的一部分重要的第一步。包括在微生物可以是引起慢性和持续感染病毒。慢性细胞感染这些病毒可以在推定受体可用性引起的改变。1,2-此外,通过细胞内病原体进入细胞也可能影响宿主细胞膜的流动性/疏水性这反过来又可以改变其他微生物部件的附着,包括细菌和真菌。为了理解可在这些多种病原体在人类宿主的同一地理区域该共定位之间发生的相互作用,我们必须能够学习的表示存在于粘膜表面生物分类王国的频谱病原体的相互作用。

t“的>的疱疹病毒是存在于人类的微生物的永久成员100%的微生物的一个家族3,4-。此外,它们也可以持续在症状的存在和缺乏棚两者。具体地说,单纯疱疹病毒-1和单纯疱疹病毒-2(HSV-1和HSV-2,分别)是在oronasopharynx和生殖道的微生物的永久成员。在免疫能力的个体,无论是HSV-1和HSV-2引起龈,以及生殖器疱疹5-8。在这些站点,单纯疱疹病毒引起潜伏感染为特征的慢性持续性无症状病毒脱落的HSV 9。加入到在改变细胞的结果在nectins,硫酸乙酰肝素,脂筏和疱疹病毒条目介体的表面表达/肿瘤坏死因子受体(HVEM / TNFR)10-25。这些潜在代表共享受体某些细菌和真菌, 如金黄色葡萄球菌白色念珠菌,这同时致病菌,也可以驻留作为oronasopharynx 26,27的粘膜微生物的成员。内oronasopharynx S.金黄色葡萄球菌C.白色念珠菌定植占据两个不同的地点。与天然齿的主机,口腔粘膜用HSV-1和C共享白色念珠菌,而前鼻鼻孔都是由S.占用金黄色葡萄球菌 28。然而,尽管体外研究结果,即S。金黄色葡萄球菌坚持口上皮细胞,29,30 S.当正常组织存在金黄色葡萄球菌 29,30不经常口腔标本中分离。鲜为人知的是关于超越的临床研究结果,即生殖道共定植龛称为S.金黄色葡萄球菌与有氧阴道炎,其特点是生殖器炎症,分泌物和性交痛,而C.白色念珠菌产生粘膜病变类似于在口腔中31-35观察。因此,虽然口腔和生殖器microbi的这些部件青梅交叉分类王国小关于它们的相互作用是已知的,因为它影响其通过加入引发生物膜形成与宿主细胞表面5的能力。该协议得到了有效的应用,以确定共同定植/感染的功能性后果。

Protocol

1,HSV毒株和处理注:重组非扩频HSV-1(KOS)gL86和HSV-2(KOS)333gJ -与所使用的五Twiari 36,37分别提供β-半乳糖苷报告基因活性。 从单一的很多并储存在-80℃,使用的病毒以1:Dulbecco改良的Eagle培养基(DMEM),用20%胎牛血清(FBS)的比例为1和脱脂牛奶直到使用。病毒大量的存储之前,由邻 -硝基苯基β-D-吡喃半乳糖苷(ONPG)和5-溴-4-氯-3-吲哚基β-D-吡喃半乳糖苷(X…

Representative Results

从这份报告中所描述的系统获得数据的稳健性的级别如图2所示AF 38。通过使用这种系统的与病毒感染的细胞和它们彼此的粘附效果葡萄球菌和真菌相互作用的调制可以划定。这些类型的研究需要的相互作用的显微镜检查中,以确定多种微生物相互作用是否在相同的细胞产生的示于图3和4 38。在这项研究中?…

Discussion

目前暂无信息可到跨越多个域分类, 原核,真核和病毒宿主微生物的半常任理事国,常任之间复杂的相互作用。因此,我们开发了一种新的体外模型系统来研究由S.生物膜启动金黄色葡萄球菌C.白色念珠菌对HSV-1和HSV-2感染的HeLa 229(HeLa细胞)细胞38。 HeLa细胞模型系统呈现出独特的优势。这是由于它们缺乏表面纤连蛋白表达的,作为两个S的受体…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

This project was supported by Midwestern University, IL Office of Research and Sponsored Programs (ORSP) and Midwestern University College of Dental Medicine-Illinois (CDMI).

Materials

C.albicans
BBL Sabouraud Dextrose BD 211584
Fungisel Agar Dot Scientific 7205A
S.aureus
Mannitol Salt Agar Troy Biologicals 7143B
Sheep blood agar Troy Biologicals 221239
Hela cells
1xDMEM (Dubelcco's Modified Eagle Medium, with 4.5 g/L glucose and L-glutamine, without sodium pyruvate Corning 10-017-CM
Gentamicin 50mg/ml Sigma 1397 50µg/ml final concentration in the complete DMEM
Trypsin EDTA (0.05% Trypsin, 0.53M EDTA)Solution 1X Corning 25-052-CI
Fetal Bovine Serum Atlanta Biologicals S11150 10% final concentration in the complete DMEM
Other medium and reagents
ONPG Thermo Scientific 34055
Ultra-Pure X gal Invitrogen 15520-018
1x HBSS (Hanks' Balanced Salt Solution) Corning 20-021-CV
1XPBS Dot Scientific 30042-500
RIPA Lysis Life Technologies 89901
Staining
Methanol Fisher Scientific A433P-4
HSV 1&2, specific for gD ViroStat 196
DAPI SIGMA D8417-5MG
Gram Crystal Violet Troy Biologicals 212527
Supplies
Petri dish 100X15 Dot Scientific 229693 
Petri dish 150X15 Kord Valmark 2902
96-Well plates Evergreen Scientific 222-8030-01F
24-well plates Evergreen Scientific 222-8044-01F
Culture tubes 100×13 Thomas Scientific 9187L61
Cover slip circles, 12mm Deckglaser CB00120RA1

Riferimenti

  1. Palu, G., et al. Effects of herpes-simplex virus type-1 infection on the plasma-membrane and related functions of HeLa S3 cells. J Gen Virol. 75, 3337-3344 (1994).
  2. Vitiello, G., et al. Lipid composition modulates the interaction of peptides deriving from herpes simplex virus type I glycoproteins B and H with biomembranes. Biochim. Biophys. Acta-Biomembr. 1808, 2517-2526 (2011).
  3. Bradley, H., Markowitz, L. E., Gibson, T., McQuillan, G. M. Seroprevalence of Herpes Simplex Virus Types 1 and 2-United States, 1999-2010. J. Infect. Dis. 209, 325-333 (2014).
  4. Szpara, M. L., et al. Evolution and diversity in Human Herpes Simplex Virus genomes. J Virol. 88, 1209-1227 (2014).
  5. Arduino, P. G., Porter, S. R. Herpes Simplex Virus Type I infection: overview on relevant clinico-pathological features. J Oral Pathol Med. 37, 107-121 (2008).
  6. Looker, K. J., Garnett, G. P. A systematic review of the epidemiology and interaction of herpes simplex virus types 1 and 2. Sex. Transm. Infect. 81, 103-107 (2005).
  7. Taylor, T. J., Brockman, M. A., McNamee, E. E., Knipe, D. M. Herpes simplex virus. Front Biosci. 7, 752-764 (2002).
  8. Bernstein, D. I., et al. Epidemiology, clinical presentation, and antibody response to primary infection with Herpes Simplex Virus Type 1 and Type 2 in young women. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 56, 344-351 (2013).
  9. Sacks, S. L., et al. HSV shedding. Antiviral Res. 63, 19-26 (2004).
  10. Brandhorst, T. T., et al. Structure and Function of a Fungal Adhesin that Binds Heparin and Mimics Thrombospondin-1 by Blocking T Cell Activation and Effector Function. PLoS Pathog. 9, (2013).
  11. Green, J. V., et al. Heparin-Binding Motifs and Biofilm Formation by Candida albicans. Journal of Infectious Diseases. 208, 1695-1704 (2013).
  12. Khalil, M. A., Sonbol, F. I. Investigation of biofilm formation on contact eye lenses caused by methicillin resistant Staphylococcus aureus. Niger. J. Clin. Pract. 17, 776-784 (2014).
  13. Shanks, R. M. Q., et al. Heparin stimulates Staphylococcus aureus biofilm formation. Infection and Immunity. 73, 4596-4606 (2005).
  14. Tiwari, V., et al. Role for 3-O-sulfated heparan sulfate as the receptor for herpes simplex virus type 1 entry into primary human corneal fibroblasts. J Virol. 80, 8970-8980 (2006).
  15. Delboy, M. G., Patterson, J. L., Hollander, A. M., Nicola, A. V. Nectin-2-mediated entry of a syncytial strain of herpes simplex virus via pH-independent fusion with the plasma membrane of Chinese hamster ovary cells. Virol J. 3, (2006).
  16. Di Giovine, P., et al. Structure of Herpes Simplex Virus Glycoprotein D Bound to the Human Receptor Nectin-1. PLoS Pathog. 7, (2011).
  17. Hauck, C. R. Cell adhesion receptors – signaling capacity and exploitation by bacterial pathogens. Medical Microbiology and Immunology. 191, 55-62 (2002).
  18. Kramko, N., et al. Early Staphylococcus aureus-induced changes in endothelial barrier function are strain-specific and unrelated to bacterial translocation. Int. J. Med. Microbiol. 303, 635-644 (2013).
  19. Roy, S., Nasser, S., Yee, M., Graves, D. T., Roy, S. A long-term siRNA strategy regulates fibronectin overexpression and improves vascular lesions in retinas of diabetic rats. Molecular vision. 17, 3166-3174 (2011).
  20. Sato, R., et al. Impaired cell adhesion, apoptosis, and signaling in WASP gene-disrupted Nalm-6 pre-B cells and recovery of cell adhesion using a transducible form of WASp. Int. J. Hematol. 95, 299-310 (2012).
  21. Shukla, S. Y., Singh, Y. K., Shukla, D. Role of Nectin-1, HVEM, and PILR-alpha in HSV-2 entry into human retinal pigment epithelial cells. Invest. Ophthalmol. Vis. Sci. 50, 2878-2887 (2009).
  22. Stump, J. D., Sticht, H. Mutations in herpes simplex virus gD protein affect receptor binding by different molecular mechanisms. J Molecu Model. 20, (2014).
  23. Zelano, J., Wallquist, W., Hailer, N. P., Cullheim, S. Expression of nectin-1, nectin-3, N-cadherin, and NCAM in spinal motoneurons after sciatic nerve transection. Experimental Neurology. 201, 461-469 (2006).
  24. Akhtar, J., et al. HVEM and nectin-1 are the major mediators of herpes simplex virus 1 (HSV-1) entry into human conjunctival epithelium. Investigative Ophthalmology & Visual Science. 49, 4026-4035 (2008).
  25. Heo, S. K., et al. LIGHT enhances the bactericidal activity of human monocytes and neutrophils via HVEM. J. Leukoc. Biol. 79, 330-338 (2006).
  26. . National Nosocomial Infections Surveillance (NNIS) System Report. Am J Infect Control. 32, 470-485 (2004).
  27. Wisplinghoff, H., et al. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 39, 1093-1093 (2004).
  28. Colacite, J., et al. Pathogenic potential of Staphylococcus aureus strains isolated from various origins. Ann. Microbiol. 61, 639-647 (2011).
  29. Colombo, A. V., et al. Quantitative detection of Staphylococcus aureus, Enterococcus faecalis and Pseudomonas aeruginosa in human oral epithelial cells from subjects with periodontitis and periodontal health. J. Med. Microbiol. 62, 1592-1600 (2013).
  30. Merghni, A., Ben Nejma, M., Hentati, H., Mahjoub, A., Mastouri, M. Adhesive properties and extracellular enzymatic activity of Staphylococcus aureus strains isolated from oral cavity. Microb Pathogen. 73, 7-12 (2014).
  31. Donders, G. G. G., et al. Definition of a type of abnormal vaginal flora that is distinct from bacterial vaginosis: aerobic vaginitis. Bjog. 109, 34-43 (2002).
  32. Li, J. R., McCormick, J., Bocking, A., Reid, G. Importance of vaginal microbes in reproductive health. Repro Sci. 19, 235-242 (2012).
  33. Jarvis, W. R. The epidemiology of colonization. Infect Cont Hosp Epidemiol. 17, 47-52 (1996).
  34. Okonofua, F. E., Akonai, K. A., Dighitoghi, M. D. Lower genital-tract infections in infertile nigerian women compared with controls. Genitourin Med. 71, 163-168 (1995).
  35. Nenoff, P., et al. Mycology – an update Part 2: Dermatomycoses: Clinical picture and diagnostics. J Der Deutschen Dermatol Gesellschaft. 12, 749-779 (2014).
  36. Hubbard, S., et al. Contortrostatin, a homodimeric disintegrin isolated from snake venom inhibits herpes simplex virus entry and cell fusion. Antivir. Ther. 17, 1319-1326 (2012).
  37. Shukla, S. Y., Singh, Y. K., Shukla, D. Role of Nectin-1, HVEM, and PILR-α in HSV-2 entry into human retinal pigment epithelial cells. Investigative Ophthalmology & Visual Science. 50, 2878-2887 (2009).
  38. Plotkin, B. J., Sigar, I. M., Tiwari, V., Halkyard, S. Herpes simplex virus (HSV) modulation of Staphylococcus aureus. and Candida albicans.initiation of HeLa 299 cell-associated biofilm. Curr Microbiol. , (2016).
  39. Alva-Murillo, N., Lopez-Meza, J. E., Ochoa-Zarzosa, A. Nonprofessional phagocytic cell receptors involved in Staphylococcus aureus internalization. Biomed Res Internat. , (2014).
  40. Calderone, R. A., Scheld, W. M. Role of fibronectin in the pathogenesis of candidal infections. Reviews of infectious diseases. 9, 400-403 (1987).
  41. Fowler, T., et al. Cellular invasion by Staphylococcus aureus involves a fibronectin bridge between the bacterial fibronectin-binding MSCRAMMs and host cell beta1 integrins. European journal of cell biology. 79, 672-679 (2000).
  42. Mao, L., Franke, J. Symbiosis, dysbiosis, and rebiosis-The value of metaproteomics in human microbiome monitoring. Proteomics. 15, 1142-1151 (2015).
  43. Christopher, R. A., Kowalczyk, A. P., McKeown-Longo, P. J. Localization of fibronectin matrix assembly sites on fibroblasts and endothelial cells. J Cell Sci. 110, 569-581 (1997).
  44. Heino, J., Kapyla, J. Cellular receptors of extracellular matrix molecules. Current Pharm Des. 15, 1309-1317 (2009).
  45. Hynes, R. O., et al. A large glycoprotein lost from the surfaces of transformed cells. Annals of the New York Academy of Sciences. 312, 317-342 (1978).
  46. Mao, Y., Schwarzbauer, J. E. Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix biology : journal of the International Society for Matrix Biology. 24, 389-399 (2005).
  47. Schwarzbauer, J. E., DeSimone, D. W. Fibronectins, their fibrillogenesis, and in vivo functions. Cold Spring Harbor perspectives in biology. 3, (2011).
  48. Abdelmegeed, E., Shaaban, M. I. Cydooxygenase inhibitors reduce biofilm formation and yeast-hypha conversion of fluconazole resistant Candida albicans. J. Microbiol. 51, 598-604 (2013).
  49. Gow, N. A. Germ tube growth of Candida albicans. Current topics in medical mycology. 8, 43-55 (1997).
  50. Liu, Y. P., Filler, S. G. Candida albicans Als3, a multifunctional adhesin and invasin. Eukaryot. Cell. 10, 168-173 (2011).
  51. Lu, Y., Su, C., Liu, H. Candida albicans hyphal initiation and elongation. Trends Microbiol. 22, 707-714 (2014).
  52. Kabir, M. A., Hussain, M. A., Ahmad, Z. Candida albicans: A model organism for studying fungal pathogens. ISRN microbiology. 2012, 538694 (2012).
  53. Ovchinnikova, E. S., Krom, B. P., Busscher, H. J., van der Mei, H. C. Evaluation of adhesion forces of Staphylococcus aureus along the length of Candida albicans hyphae. BMC Microbiol. 12, (2012).
  54. Peters, B. M., et al. Staphylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p. Microbiology-Sgm. 158, 2975-2986 (2012).

Play Video

Citazione di questo articolo
Plotkin, B. J., Sigar, I. M., Tiwari, V., Halkyard, S. Determination of Biofilm Initiation on Virus-infected Cells by Bacteria and Fungi. J. Vis. Exp. (113), e54162, doi:10.3791/54162 (2016).

View Video