A protocol for the electrochemical testing of an aprotic Li-O2 battery with the preparation of electrodes and electrolytes and an introduction of the frequently used methods of characterization is presented here.
We demonstrate a method for electrochemical testing of an aprotic Li-O2 battery. An aprotic Li-O2 battery is made of a Li-metal anode, an aprotic electrolyte, and an O2-breathing cathode. The aprotic electrolyte is a solution of lithium salt with aprotic solvent; and porous carbon is commonly used as the cathode substrate. To improve the performance, an electrocatalyst is deposited onto the porous carbon substrate by certain deposition methods, such as atomic layer deposition (ALD) and wet-chemistry reaction. The as-prepared cathode materials are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray absorption near edge structure (XANES). A Swagelok-type cell, sealed in a glass chamber filled with pure O2, is used for the electrochemical test on a battery test system. The cells are tested under either capacity-controlled mode or voltage controlled mode. The reaction products are investigated by electron microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, and Raman spectroscopy to study the possible pathway of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). This protocol demonstrates a systematic and efficient arrangement of routine tests of the aprotic Li-O2 battery, including the electrochemical test and characterization of battery materials.
В 1996 году Авраам и Цзян 1 сообщил первый обратимый аккумулятор неводной Li-O 2 , состоящий из пористого углеродного катода, органического электролита, а также литий-металлического анода. С тех пор, из – за его чрезвычайно высокой теоретической плотности энергии , превышающей любых других существующих систем хранения энергии, батарея Li-O 2, которое индуцирует электрический ток за счет окисления лития на аноде и восстановления кислорода на катоде ( общая реакция Li + + O 2 + е – ↔ Li 2 O 2), получил значительный интерес в последнее время 1-8.
Катод материал со следующими требованиями были бы в состоянии удовлетворить потребности высокой производительности Li-O 2 батареи: (1) диффузия кислорода быстро; (2) хороший электрический и ионной проводимости; (3) высокая удельная площадь поверхности; и (4) стабильность. Оба площадь поверхности и пористость катода имеют решающее значение для. электрохимические характеристики литий-O 2 батарей 9-12 Пористая структура позволяет осаждение твердых выбросов продуктов , образующихся в результате реакции катионов Li с O 2; и большие площади поверхности обеспечивают более активные участки для размещения электрокаталитические частиц, которые ускоряют электрохимические реакции. Такие электрокатализаторами добавляют в катодный материал определенными способами осаждения, которые обеспечивают сильную адгезию к подложке и хорошим контролем частиц катализатора, с сохранением исходной пористой структуры поверхности подложки. 13-17 форме, как они были подготовлены материалы тестируются в клетках БРС типа в качестве катода апротонного батареи Li-O 2. Тем не менее, производительность клетки зависит не только от природы катодных материалов, но и от типа апротонного электролита и 18-22 литий-металлического анода. 23-26 больше влияния включают количество и концентрацию материалов , так и пrocedure используется в тестах заряда / разряда. Надлежащие условия и протоколы позволит оптимизировать и улучшить общую производительность батареи материалов.
В дополнение к результатам электрохимического теста, емкость аккумулятора может быть также оценена путем характеризации нетронутые материалов и продуктов реакции. 27-33 с помощью сканирующей электронной микроскопии (SEM) , используется для исследования микроструктуры поверхности катодного материала и морфологии эволюция разрядных продуктов. Методами просвечивающей электронной микроскопии (ПЭМ), рентгеновского поглощения вблизи края структуры (XANES) и рентгеновской фотоэлектронной спектроскопии (РФЭС) могут быть использованы для определения ультраструктурному химическое состояние и компонент элементов, особенно для этого наночастиц катализатора. С высокой энергией рентгеновской дифракции (XRD) используется для идентификации непосредственно Кристаллический продукты разряда. Возможное разложение электролита может быть определена путем нарушенного полного внутреннего отражения преобразования ФурьеИнфракрасный (ИК-Фурье-ATR) и спектры комбинационного рассеяния света.
Эта статья представляет собой протокол , который демонстрирует систематическое и эффективное расположение контрольных испытаний апротонном батареей Li-O 2, включая подготовку аккумуляторных материалов и комплектующих, испытания электрохимических характеристик и характеристик нетронутых материалов и продуктов реакции. Детальный протокол видео призвано помочь новым практиков в области избежать многих распространенных ошибок , связанных с тестированием производительности и характеристик 2 -х батарей Li-O.
Учитывая чувствительность Li-O 2 батареи системы для воздуха, особенно СО 2 и влаги, много шагов в протоколе необходимы для того , чтобы уменьшить и мешающих избежать побочных реакций. Например, БРС-типа клетки собирают в перчаточной камере , заполненной аргоном с O 2 <0,5 ч…
The authors have nothing to disclose.
Research at Argonne National Laboratory was funded by U.S. Department of Energy, FreedomCAR and Vehicle Technologies Office. Use of the Advanced Photon Source and research carried out in the Electron Microscopy Center at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
1-Methyl-2-pyrrolidinone (NMP), 99.5% | Sigma-Aldrich | 328634 | |
Battery test system | MACCOR | Series 4000 Automated Test System | |
Dimethyl carbonate (DMC), ≥99% | Sigma-Aldrich | 517127 | |
Ethyl alcohol, ≥99.5% | Sigma-Aldrich | 459844 | |
Formaldehyde solution, 37 wt. % in H2O | Sigma-Aldrich | 252549 | |
Graphitized Carbon black, >99.95% | Sigma-Aldrich | 699632 | |
Iron(III) chloride (FeCl3), 97% | Sigma-Aldrich | 157740 | |
Kapton polyimide tubing | Cole-Parmer | EW-95820-09 | |
Kapton polymide tape | Cole-Parmer | EW-08277-80 | |
Kapton window film | SPEX Sample Prep | 3511 | |
Lithium Chip (99.9% Lithium) | MTI Corporation | EQ-Lib-LiC25 | |
Lithium trifluoromethanesulfonate (LiCF3SO3) | Sigma-Aldrich | 481548 | |
Palladium hexafluoroacetylacetonate (Pd(hfac)2), 99.9% | Aldrich | 401471 | |
Poly(vinylidene fluoride) (PVDF) | Aldrich | 182702 | |
Potassium permanganate (KMnO4), ≥99.0% | Sigma-Aldrich | 223468 | |
Sodium hydroxide (NaOH), ≥97.0% | Sigma-Aldrich | 221465 | |
Tetraethylene glycol dimethyl ether (TEGDME), ≥99% | Aldrich | 172405 | |
Toray 030 carbon paper | ElectroChem Inc. | 590637 |