Summary

测量的方向和旋转速率方法3D打印在湍流颗粒

Published: June 24, 2016
doi:

Summary

We use 3D printing to fabricate anisotropic particles in the shapes of jacks, crosses, tetrads, and triads, whose alignments and rotations in turbulent fluid flow can be measured from multiple simultaneous video images.

Abstract

实验方法都用于测量在湍流流体流动各向异性颗粒的旋转和平移运动。三维印刷技术用于制造具有在一个共同的中心连接的细长臂的颗粒。探索形状杂交(两个垂直杆),插孔(三个垂直杆),黑社会(三个杆三角平面对称),和四分体(四臂在四面体对称)。为年产10000荧光染色的颗粒的顺序上的方法进行说明。它们的取向和固体旋转速度的时间分辨测量从他们的运动四个同步视频中的紊流被Rλ= 91振荡网格在这种相对低雷诺数流之间得到的平流输送颗粒是足够小它们近似椭圆示踪粒子。我们提出的作为粒子的位置和方向时间分辨三维轨迹的结果以及它们的旋转速度的测量。

Introduction

在最近发布,我们推出了使用多个修长的手臂,用于测量动荡1粒子的旋转运动由粒子组成的。这些颗粒可以利用三维打印机使用多个摄像机的旋转速度来制造,并且可以精确地测量他们的位置,方向,和。使用工具从细长体理论,可以证明,这些粒子有对应的有效椭球2,并且这些粒子的旋转运动是相同的各自的有效的椭球。与相同长度的对称武器的粒子旋转球一样。一个这样的颗粒是插口,其具有附接在其中心三个相互垂直的臂。调整千斤顶的臂的相对长度可形成粒子等同于任何三轴椭球。如果一个臂的长度被设定等于零,这创建了一个交叉,其等效椭圆体是一个磁盘。修长制成颗粒武器背起他们的固体椭同行的固体体积的一小部分。其结果是,他们滓更慢,这使得它们更容易密度匹配。这允许更大的颗粒的研究比是方便与固体椭圆颗粒。此外,成像可以在高得多的粒子浓度,因为颗粒阻挡来自其它颗粒的光的较小部分进行。

在本文中,对于制造和3D印刷颗粒的跟踪方法被记录。用于跟踪由多个相机所看到从粒子位置球形颗粒的平移运动的工具已被几个小组3,4-开发的。伯尔萨 5扩展这种方法来跟踪使用由多个摄像机看到的杆的位置和方向的棒。这里,我们提出的用于制造的各种各样的形状的颗粒和重建他们的3D取向的方法。这提供日Ë可能性具有复杂形状的颗粒3D追踪扩展到范围广泛的新应用。

该技术有进一步的发展,因为宽范围的粒子的形状可设计的巨大潜力。许多这些形状在环境流量,其中浮游生物,种子和冰晶进来形状繁多直接应用。粒子的旋转和湍流6基本小型性质之间的联系表明,这些粒子的旋转研究提供了新的方式来看待汹涌的级联过程。

Protocol

1.粒子的制备使用3D计算机辅助绘图程序来创建粒子模型。导出每模型中的一个文件中,可以由所使用的三维打印机进行处理的文件格式。 使用CIRCLE命令绘制圆形,直径为0.3毫米。使用挤出功能,使一个气缸为3毫米的长度。 请用一个共同的中心两个正交缸交叉;使用一个共同的中心三个相互垂直的圆柱体插孔;使一个四分与四个气缸分享在109.5°的角度彼此共同的端;使一个三元?…

Representative Results

图3a示出一个四分体从我们的相机欧拉的曲线上方一项所述的图像的角度从它的轨迹( 图3c)的部分获得。在图3b中,取向寻找算法,在协议5中描述的结果- 5.3,叠加四分体图像上。 图3a四分体的武器不遵守,用于创建模型的简单的强度分布(协议5.1.3.1)。这是对于所有的颗粒也是如此。所观察到的强度还具有一个非平?…

Discussion

涡度和湍流流体流动粒子的旋转测量已长期被认为是在实验流体力学的重要目标。小球在湍流的固体旋转等于一半的流体涡,但球的旋转对称性还使他们的固体旋转困难的直接测量。传统上,流体涡已经使用复杂的多传感器测量,热丝探头14。但是这些传感器只获得在具有大的平均流速的气流单点涡测量。其他涡测量方法已经开发了。例如,苏和达姆采用基于标图像15LÜTHI,Tsinober

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

我们感谢Susantha Wijesinghe谁设计和建造我们使用了图像压缩系统。我们承认从美国国家科学基金会资助DMR-1208990的支持。

Materials

Condor Nd:YAG 50W laser Quantronics 532-30-M
High speed camera Basler A504k
High speed camera Mikrotron EoSens Mc1362
Rhodamine-B ScienceLab.com SLR1465
Sodium Hydroxide Macron 7708 Pellets.
500 Connex 3D printer Objet Used to make smaller particles. Particles ordered from RP+M (rapid prototyping plus manufacturing).
VeroClear Stratasys RGD810 Objet build material.
Form 1+ 3D printer Formlabs Used to make larger particles.
Clear Form 1 Photopolymer Resin Formlabs
Cylindrical and spherical lenses
200, 100, 50 mm macro camera lenses F-mount.
Ultrasonic bath Sonicator
Calcium Chloride Spectrum Chemical Mfg. Corp. CAS 10043-52-2 Pellets.
LabVIEW System Design Software National Instruments Used to trigger cameras, control grid, and trigger laser.
XCAP Software EPIX Used with LabVIEW to trigger cameras.
MATLAB Mathworks Used for all image and data analysis. Programs for extracting 3D orientations from multiple images are included with this publication.
OpenPTV: Open Source Particle Tracking Velocimetry OpenPTV Consortium
ParaView Kitware
AutoCAD AutoDesk Used to design all particles. Screenshots of particle designs are all of AutoCAD.
Mesh with 0.040 x 0.053 inch holes Industrial Netting XN5170–43.5
Camera filters Schneider Optics B+W 040M

Riferimenti

  1. Marcus, G., Parsa, S., Kramel, S., Ni, R., Voth, G. Measurements of the Solid-body Rotation of Anisotropic Particles in 3D Turbulence. New J. Phys. 16, 102001 (2014).
  2. Bretherton, F. The motion of rigid particles in a shear flow at low Reynolds number. J. Fluid Mech. 14 (02), 284-304 (1962).
  3. Oullette, N., Xu, H., Bodenschatz, E. A quantitative study of three-dimensional Lagrangian particle tracking algorithms. Exp. in Fluids. 40 (2), 301-313 (2006).
  4. Parsa, S., Calzavarini, E., Toschi, F., Voth, G. Rotation Rate of Rods in Turbulent Fluid. Phys. Rev. Lett. 109 (13), 134501 (2012).
  5. Parsa, S., Voth, G. Inertial Range Scaling in Rotations of Long Rods in Turbulence. Phys. Rev. Lett. 112 (2), 024501 (2014).
  6. Tsai, R. A versatile camera calibration technique for high-accuracy 3d machine vision metrology using off-the-shelf tv cameras and lenses. IEEE Journal of Robotics and Automation. 3 (4), 323-344 (1987).
  7. Blum, D., Kunwar, S., Johnson, J., Voth, G. Effects of nonuniversal large scales on conditional structure functions in turbulence. Phys. Fluids. 22 (1), 015107 (2010).
  8. Mann, J., Ott, S., Andersen, J. S. Experimental study of relative, turbulent diffusion. RISO Internal Report. , (1999).
  9. Chan, K., Stich, D., Voth, G. Real-time image compression for high-speed particle tracking. Rev. Sci. Instrum. 78 (2), 023704 (2007).
  10. Goldstein, H., Poole, C., Safko, J. . Classical Mechanics, 3rd Edition. , 134-180 (2002).
  11. Parsa, S. . Rotational dynamics of rod particles in fluid flows. , (2013).
  12. Wijesinghe, S. . Measurement of the effects of large scale anisotropy on the small scales of turbulence. , (2012).
  13. Wallace, J., Foss, J. The Measurement of Vorticity in Turbulent Flows. Annu. Rev. Fluid Mech. 27, 469-514 (1995).
  14. Su, L., Dahm, W. Scalar imaging velocimetry measurements of the velocity gradient tensor field in turbulent flows. I. Assessment of errors. Phys. Fluids. 8, 1869-1882 (1996).
  15. Lüthi, B., Tsinober, A., Kinzelbach, W. Lagrangian measurement of vorticity dynamics in turbulent flow. J. Fluid Mech. 528, 87-118 (2005).
  16. Frish, M., Webb, W. Direct measurement of vorticity by optical probe. J. Fluid Mech. 107, 173-200 (1981).
  17. Zimmerman, R., et al. Tracking the dynamics of translation and absolute orientation of a sphere in a turbulent flow. Rev. Sci. Instrum. 82 (3), 033906 (2011).
  18. Zimmerman, R., et al. Rotational Intermittency and Turbulence Induced Lift Experienced by Large Particles in a Turbulent Flow. Phys. Rev. Lett. 106 (15), 154501 (2011).
  19. Klein, S., Gibert, M. a. t. h. i. e. u., Bérut, A., Bodenschatz, E. Simultaneous 3D measurement of the translation and rotation of finite-size particles and the flow field in a fully developed turbulent water flow. Meas. Sci. Technol. 24 (2), 1-10 (2013).
  20. Bellani, G., Byron, M., Collignon, A., Meyer, C., Variano, E. Shape effects on turbulent modulation by large nearly neutrally buoyant particles. J. Fluid Mech. 712, 41-60 (2012).

Play Video

Citazione di questo articolo
Cole, B. C., Marcus, G. G., Parsa, S., Kramel, S., Ni, R., Voth, G. A. Methods for Measuring the Orientation and Rotation Rate of 3D-printed Particles in Turbulence. J. Vis. Exp. (112), e53599, doi:10.3791/53599 (2016).

View Video