Ein Protokoll ist für die Charakterisierung der wichtigsten elektrochemischen Parameter einer mit Bor dotierten Diamant (BDD) Elektrode und anschließende Anwendung für die in situ Erzeugung pH Versuchen beschrieben.
Bor dotiertem Diamant (BDD) Elektroden haben ein beträchtliches Potential als Elektrodenmaterial in dem viele ihrer gemeldeten Eigenschaften wie erweiterte Lösungsmittel Fenster geringe Hintergrundströme, Korrosionsbeständigkeit, usw., ergeben sich aus der katalytisch inerten Natur der Oberfläche dargestellt. Wenn jedoch während des Wachstumsprozesses, wird Nicht-Diamant-Kohlenstoff (NDC) in der Elektrodenmatrix eingearbeitet, werden die elektrochemischen Eigenschaften zu ändern, wenn die Oberfläche katalytisch aktiv wird. Als solches ist es wichtig, dass der Elektrochemiker bekannt ist für die Qualität und die resultierenden Schlüsselelektrochemischen Eigenschaften des BDD Elektrode vor der Verwendung. Diese Veröffentlichung beschreibt eine Reihe von Charakterisierungsschritte einschließlich Raman-Mikroskopie, Kapazität, Lösungsmittel Fenster und Redox Elektrochemie, um festzustellen, ob die BDD-Elektrode enthält vernachlässigbare NDC also vernachlässigbar sp 2 -Kohlenstoff. Eine Anwendung markiert ist, welche Vorteile der katalytisch inerten stattund korrosionsbeständige Natur eines NDC freie Oberfläche, dh stabilen und quantifizierbaren lokalen Protonen und Hydroxid-Produktion durch Wasserelektrolyse an einer BDD-Elektrode. Ein Ansatz zur Messung des lokalen pH-Änderung durch Elektrolyse von Wasser unter Verwendung von Iridiumoxid beschichtet BDD Elektroden induziert wird ebenfalls im Detail beschrieben.
Wahl des Elektrodenmaterials ist von großer Bedeutung bei der Durchführung jeder elektroanalytische Studie. In den letzten Jahren sp 3 Kohlenstoff (Diamant) mit genügend Bor, das Material zu rendern dotierten "metallartigen" hat sich zu einer beliebten Wahl für eine breite Palette von elektroanalytische Anwendungen aufgrund ihrer hervorragenden elektrochemischen (und thermischen und mechanischen) Eigenschaften 1,2 , 3. Dazu gehören Korrosionsbeständigkeit unter extremen Lösung, Temperatur- und Druckbedingungen 4 Ultra-Weit Lösungsmittel Fenster, niedrige Hintergrundströme und reduziert Fouling, im Vergleich zu anderen gängigen Elektrodenmaterialien 5-7,3. Die Erhöhung Nicht-Diamant-Kohlenstoff (NDC: sp 2) Gehalt führt zu einer Abnahme der Lösungsmittelfenster, steigende Hintergrundströme 7,8, Änderungen sowohl strukturelle Integrität und die Sensibilität gegenüber unterschiedlichen inneren Kugel Redoxspezies, zB. Sauerstoff 9-12.
Hinweis für some Anwendungen wird NDC Präsenz als vorteilhaft, 13 zu sehen. Außerdem, wenn das Material nicht ausreichend Bor enthalten, werden sie als Halbleiter-p-Verhalten und zeigen eine verminderte Empfindlichkeit gegen Redoxspezies in der reduktiven Potentialfenster, wo das Material die meisten Ladungsträger 7 aufgebraucht ist. Schließlich kann die Oberflächenchemie von Bor dotiertem Diamant (BDD) spielen auch eine Rolle bei der beschriebenen elektrochemischen Antwort. Dies gilt insbesondere für die innere Kugel Arten, die Oberflächenchemie und niedriger dotierten Diamanten in dem ein Wasserstoff (H -) – empfindlich sind beendet Oberfläche bilden eine halbleitende BDD Elektrode erscheinen "metallartig" 7.
Um die Vorteile der überlegenen Eigenschaften der BDD zu nehmen, ist es oft unerlässlich das Material ausreichend dotiert und enthält so wenig NDC wie möglich. Abhängig von der angenommen, um die BDD wachsen Verfahren können die Eigenschaften 14,15 variieren. Dieses Papier schlägt vor, zunächst ein Material und einen Auserwähltenchemischen Charakterisierung Protokoll Leitfaden für die Bewertung der BDD-Elektrode Eignung vor der Anwendung (dh ausreichend Bor, minimal NDC) und beschreibt dann eine Anwendung auf Basis von lokal wechselnden pH elektrochemisch unter Verwendung des Protokolls-Elektrode überprüft. Dieses Verfahren nutzt den Vorteil des Oberflächenwiderstandsfähigkeit von NDC freien BDD zu Korrosion oder Auflösung unter Anwendung extremer angelegten Potentiale (oder Ströme) für lange Zeiträume. Insbesondere die Verwendung eines BDD Elektrode stabile Proton (H +) oder Hydroxid zu erzeugen (OH -) Flüsse durch Elektrolyse (Oxidation oder Reduktion jeweils) Wasser in unmittelbarer Nähe zu einer zweiten (Sensor) 16,17 wird hier beschrieben.
Auf diese Weise ist es möglich, den pH-Umgebung des Sensors in einer systematischen Weise zu steuern, beispielsweise für pH-Titration, oder um den pH auf einen Wert in dem der elektrochemische Prozess ist am empfindlichsten zu fixieren. Letzteres ist besonders nützlich,Anwendungen, bei denen der Sensor an der Quelle, zum Beispiel Fluß, See, Meer und dem pH des Systems platziert ist nicht optimal für die elektrochemische Messung von Interesse. Zwei neuere Beispiele schließen ein: (i) die Erzeugung eines lokalisierten niedrigen pH in einem pH-neutralen Lösung für die Elektroabscheidung und Strippen von Quecksilber 17; beachten Sie BDD ist ein beliebtes Material für die elektrochemische Abscheidung von Metallen aufgrund der erweiterten kathodischen Fenster 9,18,19. (ii) Quantifizierung des elektrochemisch detektierbare Form von Schwefelwasserstoff, bei hohem pH Derzeit indem der pH lokalen Erhöhung von neutral bis stark alkalisch 16.
Beginnend mit einem O-terminierte Oberfläche befürwortet wird, weil die H-terminierten Oberfläche elektrochemisch instabil ist, insbesondere bei hohen anodischen Potentialen 7,40,41 ist. Ändern Oberflächenterminierung können die Elektronen-Transfer Kinetik der inneren Kugel Paare, wie beispielsweise die Wasserelektrolyse (hier verwendet, um den pH-Wert lokale Lösung zu ändern) zu beeinflussen. Wenn darüber hinaus die BDD enthält signifikante NDC an den Korngrenzen ist es auch möglich, dass bei Anwe…
The authors have nothing to disclose.
Wir möchten Dr. Jonathan Newland für das Foto di 4B und für die Verarbeitung von optischen Mikroskop Bilder für das Video, Miss Jennifer Webb für Beratung und Visuals auf Kontaktwinkelmessungen danken, Miss Sze-yin Tan für das Lösungsmittel Fensterdaten di 2B Dr. Maxim Joseph für die Beratung über die Raman-Spektroskopie, aber auch Mitglieder der Warwick Elektrochemie und Grenzflächengruppe, die geholfen haben, die hier beschriebenen Protokolle zu entwickeln. Wir möchten auch Max Joseph, Lingcong Meng, Zoe Ayres und Roy Meyler ihrerseits in Dreharbeiten zu dem Protokoll zu danken.
Pt Wire | Counter Electrode | ||
Saturated Calomel Electrode | IJ Cambria Scientific Ltd. | 2056 | Reference Electrode (alternatively use Ag|AgCl) |
BDD Electrode | Working Electrode | ||
Iridium Tetrachloride | VWR International Ltd | 12184.01 | |
Hydrogen Peroxide | Sigma-Aldrich | H1009 | (30% w/w) Corrosive |
Oxalic Acid | Sigma-Aldrich | 241172 | Harmful, Irritant |
Anhydrous Potassium Chloride | Sigma-Aldrich | 451029 | |
Sulphuric Acid | VWR International Ltd | 102765G | (98%) Corrosive |
Potassium Nitrate | Sigma-Aldrich | 221295 | |
Hexaamine Ruthenium Chloride | Strem Chemicals Inc. | 44-0620 | Irritant |
Perchloric Acid | Sigma-Aldrich | 311421 | Oxidising, Corrosive |
2-Propanol | Sigma-Aldrich | 24137 | Flammable |
Nitric Acid | Sigma-Aldrich | 695033 | Oxidising, Corrosive |
Sputter/ Evapourator | With Ti & Au targets | ||
Raman | 514.5 nm laser | ||
Annealing Oven | Capable of 400°C | ||
Ag paste | Sigma-Aldrich | 735825 | or other conductive paint |
Potentiostat | |||
pH Buffer solutions | Sigma-Aldrich | 38740-38752 | Fixanal buffer concentrates |
Phenolphthalein Indicator | VWR International Ltd | 210893Q | |
Methyl Red Indicator | Sigma-Aldrich | 32654 |