Glycolysis is a defining metabolic marker in multiple biological systems. Monitoring glycolysis by measuring the extracellular flux of H+ is common, but requires correction to be quantitative and unambiguous. Here, we demonstrate how to gather and correct extracellular flux data to distinguish between respiratory and glycolytic sources of extracellular acidification.
Extracellular measurement of oxygen consumption and acid production is a simple and powerful way to monitor rates of respiration and glycolysis1. Both mitochondrial (respiration) and non-mitochondrial (other redox) reactions consume oxygen, but these reactions can be easily distinguished by chemical inhibition of mitochondrial respiration. However, while mitochondrial oxygen consumption is an unambiguous and direct measurement of respiration rate2, the same is not true for extracellular acid production and its relationship to glycolytic rate 3-6. Extracellular acid produced by cells is derived from both lactate, produced by anaerobic glycolysis, and CO2, produced in the citric acid cycle during respiration. For glycolysis, the conversion of glucose to lactate– + H+ and the export of products into the assay medium is the source of glycolytic acidification. For respiration, the export of CO2, hydration to H2CO3 and dissociation to HCO3– + H+ is the source of respiratory acidification. The proportions of glycolytic and respiratory acidification depend on the experimental conditions, including cell type and substrate(s) provided, and can range from nearly 100% glycolytic acidification to nearly 100% respiratory acidification 6. Here, we demonstrate the data collection and calculation methods needed to determine respiratory and glycolytic contributions to total extracellular acidification by whole cells in culture using C2C12 myoblast cells as a model.
Общая цель этого метода является точно измерить скорость гликолиза клеток с использованием анализа внеклеточной потока. Количественное измерение скорости гликолиза, используя внеклеточный подкисления является искомым конечная точка многих экспериментах. Тем не менее, общая скорость внеклеточного подкисления является суммой двух составляющих: дыхательная подкисление, в виде СО 2 (который увлажняет Н 2 СО 3, то распадается на НСО 3 – + Н +), и гликолитического подкисления, в виде лактата – + Н +.
Вклады CO 2 в общей внеклеточной подкисления до недавнего было считать незначительным в измерительной платформы, используемой здесь, в XF24 анализатора 7. Тем не менее, очевидно, в нескольких других систем, которые CO 2 может быть одной из основных причин внеклеточной подкисления 4-5. Несколько статей признать этот конвклад, но не пытайтесь прямой количественный СО 2 -derived кислоты 3,8,9. Недавно мы показали, что количественно СО 2 производство является значительным источником внеклеточной подкисления в этой системе 6. Кроме того, хотя существует множество метаболических путей, которые генерируют СО 2 из катаболизма глюкозы, тем осуществляется матричных дегидрогеназ в цикле лимонной кислоты подавляющие Авторы и все другие источники генерации количество CO 2, которые в пределах экспериментальной ошибки 6.
Без коррекции СО 2 производства внеклеточного подкисления, следовательно, является неоднозначным показателем гликолитического скорости и не могут быть использованы в количественном отношении. Нашей предыдущей публикации подчеркивается несколько случаев, когда дыхательная СО 2 содержит основную часть общего сигнала подкисления, даже в клетках, как правило, как полагают, в основном, используют гликолиз 6. Кроме того,дыхательная СО 2 вклад в общую подкисления широко варьируется в ходе общих метаболических экспериментах профилирования, демонстрируя, что правильно сравнение гликолитического скоростью в разные части эксперимента требует коррекции для CO 2.
Для измерения скорости гликолиза клеток с использованием скорости внеклеточной подкисления, необходимо преобразовать изменение рН на изменения в общем H +, генерируемых и вычесть внеклеточный подкисление вызванное CO 2 выделяется при работе в цикле лимонной кислоты. Здесь мы опишем простой метод для измерения внеклеточной дебит протонов (с внеклеточной изменения рН и калиброванного буферизации власти анализа среды) и СО 2 производства (от внеклеточного изменений в O 2 концентрации), и продемонстрировать, как рассчитать гликолитический скорость На основе этих измерений.
Эта сила метод ENS утилиту внеклеточного подкисления измерения, используя его правильно рассчитать скорость гликолиза, как определено лактата. Без коррекции дыхательных CO 2 (или прямого измерения лактата), невозможно определить, если и в какой степени общий уровень кислотности отражает гликолитический скорость, не оправдав интерпретацию экспериментов, использующих общую внеклеточный подкисления в качестве прямого измерения лактата.
РАСЧЕТ
СО 2 и лактата, в пределах экспериментальной ошибки, только два вклад в производство внеклеточной кислоты, основанные на экспериментах с клетками миобластов 6. Таким образом, скорость общего внеклеточного подкисления (PPR, дебита протон) может быть определена как:
PPR PPR малыш = соответственно + PPR Glyc Уравнение 1
. _content ">, где малыш = общее; соответственно = дыхания; Glyc = гликолитическая гликолитических PPR такова:PPR PPR Glyc = малыш – PPR соответственно Уравнение 2
Вот,
PPR малыш = РВЦА малыш / ВР Уравнение 3
где РВЦА = внеклеточного скорости подкисление (миль / ч / мин), и ВР = буферизации питания (миль / ч / пмоль Н + в 7 мкл), а
ППР = соответственно (10 рН-PK 1 / (1 + 10 рН-PK 1)) (макс Н + / О 2) (OCR TOT – OCR об / MYX) Уравнение 4
где К 1 = комбинированный константа равновесия СО 2 гидратации и диссоциации в НСО 3 – + Н +; макс Н + / O 2 = йе СО 2 -derived подкисление для конкретного метаболической трансформации, таких как полное окисление глюкозы 6; OCR = скорость потребления кислорода (O 2 пмоль / мин), и OCR об / MYX = без митохондриальной OCR.
Уравнение 4 изолирует митохондриальной OCR путем вычитания любого не-митохондриальной OCR (определяется как OCR, которая устойчива к митохондриальной дыхательной ядов ротенона и myxothiazol) и счетов для максимального H +, образованное на O 2 потребляется для каждого субстрата (макс Н + / O 2 ) (см 6), а также доля CO 2 порождая H + на экспериментальной температуры и рН (10 рН-PK 1 / (1 + 10 рН-PK 1). Для полного окисления глюкозы, митохондриальная кислорода Потребление Оценить (OCR) в точности равна скорости CO 2, производства. В ограниченном объеме анализа измерения внеклеточной потока, CO 2, продуктыд дыханием остается в ловушке в среду для анализа. Большая часть захваченных СО 2 увлажненной, чтобы H 2 CO 3, который затем распадается на НСО 3 – + Н +. Небольшая часть остается растворенным, но не гидратированного, а другой небольшая часть является гидратированный, но не диссоциируют, как продиктовано термодинамически комбинированным константа равновесия СО 2 гидратации и диссоциации, чтобы HCO 3 – + Н + при температуре эксперимента (37 ° C) и рН (~ 7,4).
Таким образом, полное уравнение для расчета PPR г путем вычитания PPR PPR соотв от TOT является:
PPR Glyc = РВЦА малыш / ВР – (10 рН-PK 1 / (1 + 10 рН-PK 1)) (макс Н + / O 2) (OCR малыш – OCR об / MYX) Уравнение 5
яп Таким образом, темпы дыхания и гликолиза, а также связанных с ними темпы производства АТФ, может быть количественно определена из простых измерений (потребления кислорода, внеклеточный подкисления, буферная емкость) и импорта или расчета других необходимых значений (Н + / вывода 2 , п / о, а константа равновесия K 1) 6. Эксперимент, описанный здесь расширяется на стандартных методов для использования внеклеточной поток анализатор, таких как конек XF24 10,11; для других форматов измерений внеклеточного поток (например, XF е 96, или XFP), все объемы ниже должны быть расширены соответствующим образом.
Буферный мощность в среду для анализа может быть измерена путем построения калибровочной кривой либо непосредственно во внеклеточном платформы потока или отдельно с помощью калиброванного рН зонда. Здесь три варианта для измерения буферизации внеклеточным потока среды для анализа даны, в том числе с использованием всех injectiна портах внеклеточного анализатора потока с скважин образцов клеточных бесплатно, либо с использованием только последней инъекции порт в ячейке, содержащей скважин (раздел 1), или с помощью внешнего измерения рН (раздел 2). См.прикрепленную таблицу для полных расчетов, например, данные.
Для измерения буферизации питание с помощью рН-обнаружения возможности внеклеточного инструмента потока, это самый безопасный в использовании бесклеточных скважин, чтобы минимизировать изменение сигнала. Тем не менее, в пределах погрешности, статистической разницы не существует между бесклеточной и клеточно-содержащий скважин при выполнении этого измерения (данные не показаны). Примечание: Изменение описано на стадии 1.7 осуществляет преимущество составляет любых потенциальных изменений в буферизации, предоставляемых добавленных соединений или в присутствии клеток, с недостатком шумной сигнала. Однако, как указано выше, никаких существенных различий не было обнаружено в расчетной мощности между буферным конструкции бесклеточной показанном в таблице 1, идизайн после эксперимента в таблице 2 в экспериментальных условиях, описанных здесь.
Кроме того, на малых диапазонах ΔpH (<0,4 единиц; экспериментально лучше ограниченные до 0,2 единиц), то линейный наклон получается путем построения Д миль / ч / мкмоль H + адекватно приблизительно логарифмическая зависимость между ΔpH и [H +]. Наклон стандартной кривой, следовательно, представляет собой буферную силу в среду для анализа тестируемого рН / нмоль H + в 7 мкл или миль / ч / пмоль Н + 7 мкл. Мы рекомендуем увеличение средней мощности буферизации или уменьшением плотности клеток в образцах, которые превышают единичное изменение рН 0,2 в течение времени измерения. Время измерения также может быть уменьшена, но это может привести к сокращению установившейся скорости подкисления и ввести ошибку в расчете скорости.
Внеклеточной подкисления является легко измерить указание сотовой метаболизма. Чтобы правильно определить скорость гликолиза сотовой (как определено лактата) важно знать буферизации силу в среду для анализа, и для преобразования внеклеточного измерений параметров потоков потребления кислорода и подкисления протона темпы производства. При выполнении этого расчета, подкисление в результате CO 2 выпущен в цикле лимонной кислоты могут быть вычтены, оставляя подкисление, которая является результатом лактата.
Несколько различных способов приведенные здесь, чтобы измерить силу буферизации для этой коррекции нести различные преимущества и недостатки. Внешний измерений с использованием рН электрод обладает высокой точным и воспроизводимым, но может не соответствовать небольшие различия в обнаружении рН введенной флуорофоров, содержащихся в планшет для анализа, добавлением соединений в процессе анализа, или в присутствии третон сами клетки. В-пластины измерения рН решать эти вопросы, но и ввести в разной степени экспериментального шума.
CO 2 поправка к РВЦА позволяет впервые однозначными и количественного расчета скорости гликолиза, и показывает изменение в дыхательной и гликолитического вклад в общую РВЦА в ходе эксперимента. Использование уравнения 5 и измерения OCR, РВЦА и буферизации власть, гликолитическая ставка может быть рассчитана с помощью простого таблицу представленную (таблица 6). При желании 6 Эта скорость может быть проверена путем измерения лактата после специальной. В клетках, где пентозофосфатный путь обладает высокой активностью, применение ингибиторов пути, такие как 6-aminonicotinamide может быть полезно, чтобы изолировать гликолитических скорость. Расчет взносов как CO 2 – и лактата, полученных Н + из общего измеряется внеклеточной подкислением Оценить и кислород Consumptионная Оценить является бесценным инструментом для использования внеклеточные данные потока сделать мощные и количественные заявления о метаболической активности.
Используя методики, описанные здесь, включая различные модификации для измерения буферизации мощности и оптимизации внеклеточный эксперимент потока для клеток исследуемых и данных желании скорость гликолиза в интактных клетках может быть определена количественно в широком диапазоне условий эксперимента. Этот метод ограничен клетками, которые могут расти в прикрепленной культуре на (или клетки или органеллы, которые могут быть придерживались) полистирольный поверхность. Это самый надежный при культивируемые клетки однородны и сливной, хотя полезные данные могут еще быть получены в диапазоне этих условиях. Расчеты требуют некоторые знания о метаболизме клеток, как максимум H + O 2 / колеблется от 0,65 до 1,0 для полного окисления различных субстратов и больше для частичного окисления 6, однако, если клетки кNown окислять глюкозу, значение 1.0 можно предположить.
Хотя отношение к метаболическим всех характеристик, этот способ может быть особенно полезным при использовании в системах, в которых сдвиг между дыхательной и гликолитического метаболизма, чтобы поддерживать питания сотовой АТФ является критическим фенотип, в том числе характеристики стволовых клеток и опухолевых полученных раковых клеток. Понимание метаболических нарушений контроля в этих и других контекстах позволит в большей степени сложности и точности в экспериментальной разработки и анализа этих типов клеток.
The authors have nothing to disclose.
We thank David A. Ferrick and David G. Nicholls for contributing to project conception and presentation, Renata L.S. Goncalves and Akos A. Gerencser for data not shown here and for helpful discussions, Barbara Liepe for XF24 consumables, and Andy Neilson for input in developing Eq. (5).
Pherastar FS | BMG | n/a | microplate reader |
Seahorse XF-24 | Seahorse Bioscience | n/a | extracellular flux instrument |
Seahorse XF assay plate | Seahorse Bioscience | V7-PS | consumable |
XF Calibrant | Seahorse Bioscience | 100840-000 | solution |
HCl standard | Sigma | 38280 | chemical |
oligomycin | Sigma | O4876 | chemical |
FCCP | Sigma | C2920 | chemical |
Rotenone | Sigma | R8875 | chemical |
Myxothiazol | Sigma | T5580 | chemical |
DMEM | Corning | 10-013-CV | medium component |
FBS | Corning | 35-010-CV | medium component |
penicillin/streptomycin | Corning | 30-002-CI | medium component |
carbonic anhydrase | Sigma | C2624 | chemical |
96-well assay plate | Corning | CLS3991 | consumable |
NAD+ | Sigma | N7004 | chemical |
LDH | Sigma | L1254 | chemical |