Glycolysis is a defining metabolic marker in multiple biological systems. Monitoring glycolysis by measuring the extracellular flux of H+ is common, but requires correction to be quantitative and unambiguous. Here, we demonstrate how to gather and correct extracellular flux data to distinguish between respiratory and glycolytic sources of extracellular acidification.
Extracellular measurement of oxygen consumption and acid production is a simple and powerful way to monitor rates of respiration and glycolysis1. Both mitochondrial (respiration) and non-mitochondrial (other redox) reactions consume oxygen, but these reactions can be easily distinguished by chemical inhibition of mitochondrial respiration. However, while mitochondrial oxygen consumption is an unambiguous and direct measurement of respiration rate2, the same is not true for extracellular acid production and its relationship to glycolytic rate 3-6. Extracellular acid produced by cells is derived from both lactate, produced by anaerobic glycolysis, and CO2, produced in the citric acid cycle during respiration. For glycolysis, the conversion of glucose to lactate– + H+ and the export of products into the assay medium is the source of glycolytic acidification. For respiration, the export of CO2, hydration to H2CO3 and dissociation to HCO3– + H+ is the source of respiratory acidification. The proportions of glycolytic and respiratory acidification depend on the experimental conditions, including cell type and substrate(s) provided, and can range from nearly 100% glycolytic acidification to nearly 100% respiratory acidification 6. Here, we demonstrate the data collection and calculation methods needed to determine respiratory and glycolytic contributions to total extracellular acidification by whole cells in culture using C2C12 myoblast cells as a model.
L'obiettivo generale di questo metodo è quello di misurare con precisione il tasso di glicolisi delle cellule utilizzando l'analisi del flusso extracellulare. Misurazione quantitativa della glicolisi con acidificazione extracellulare è il punto finale desiderato di molti esperimenti. Tuttavia, il tasso totale di acidificazione extracellulare è la somma di due componenti: acidificazione respiratoria, sotto forma di CO 2 (che idrata di H 2 CO 3 dissocia poi HCO 3 – + H +), e l'acidificazione glicolitico, nella forma di lattato – + H +.
I contributi di CO 2 a totale acidificazione extracellulare sono stati fino a poco tempo considerato trascurabile nella piattaforma di misurazione utilizzato qui, l'analizzatore XF24 7. Tuttavia, è chiaro in più di altri sistemi che la CO2 può essere un fattore importante di acidificazione extracellulare 4-5. Molteplici documenti riconoscono questo concontributo, ma non tentare quantificazione diretta delle emissioni di CO 2 -derived 3,8,9 acido. Abbiamo recentemente dimostrato quantitativamente che il CO 2 produzione è una fonte significativa di acidificazione extracellulare in questo sistema 6. Inoltre, anche se ci sono più vie metaboliche che generano CO2 dal catabolismo del glucosio, quelli effettuati da deidrogenasi matrice nel ciclo dell'acido citrico sono i contribuenti travolgente e tutte le altre fonti di generare quantità di CO 2 che si trovano entro l'errore sperimentale 6.
Senza correzione per CO 2 produzione, acidificazione extracellulare è quindi un indicatore ambigua di glicolisi e non può essere utilizzato quantitativamente. La nostra precedente pubblicazione evidenzia diversi casi in cui respiratorio CO 2 comprende la massa del segnale totale acidificazione, anche in cellule generalmente creduto per utilizzare principalmente glicolisi 6. Inoltre, larespiratorio CO 2 di acidificazione totale varia ampiamente nel corso di esperimenti comuni profili metabolici, dimostrando che corretto confronto della glicolisi durante le diverse parti di un esperimento richiede correzione per CO 2.
Per misurare la glicolisi di celle utilizzando il tasso di acidificazione extracellulare, è necessario convertire variazioni di pH a variazioni totale H + generati, e sottrarre l'acidificazione extracellulare causato da CO 2 rilasciata durante il funzionamento del ciclo dell'acido citrico. Qui, descriviamo un metodo semplice per misurare extracellulare tasso di produzione di protoni (da cambiamenti extracellulari di pH e la forza calibrata tampone del terreno di coltura) e produzione di CO 2 (da cambiamenti extracellulari della concentrazione O 2), e dimostrare come calcolare glicolisi utilizzando queste misurazioni.
Questa forza metodo ens l'utilità della misura acidificazione extracellulare utilizzando per calcolare correttamente glicolisi come definito dalla produzione di lattato. Senza correzione per CO respiratoria 2 (o misurazione diretta di lattato), è impossibile stabilire se e in che misura il tasso di acidificazione totale riflette glicolisi, confondendo l'interpretazione degli esperimenti che utilizzano totale acidificazione extracellulare come una misura diretta di produzione di lattato.
CALCOLI
CO 2 e lattato sono, entro l'errore sperimentale, le uniche due collaboratori di produzione di acido extracellulare, sulla base di esperimenti con le cellule mioblasti 6. Pertanto, il tasso di acidificazione totale extracellulare (PPR, velocità di produzione di protoni) può essere definito come:
PPR tot = PPR rispettivamente + PPR GLYC Equazione 1
. _content "> dove tot = totale; resp = respiratorio; GLYC = glicolitico glicolitica PPR è quindi:PPR GLYC = PPR tot – PPR resp Equazione 2
Qui,
PPR tot = ECAR tot / BP equazione 3
dove ECAR = tasso di acidificazione extracellulare (mph / min), e BP = potenza di buffering (mph / pmol H + in 7 ml), mentre
PPR resp = (10 pH-PK 1 / (1 + 10 pH-PK 1)) (max H + / O 2) (OCR tot – OCR rot / myX) Equazione 4
dove K 1 = costante di equilibrio combinato di CO 2 l'idratazione e la dissociazione di HCO 3 – + H +; max H + / O 2 = °e CO 2 acidificazione -derived per una particolare trasformazione metabolica come completa ossidazione del glucosio 6; OCR = tasso di ossigeno consumo (pmol O 2 / min), e OCR rot / myX = OCR non mitocondriale.
Equazione 4 isolati OCR mitocondriale sottraendo qualsiasi OCR non mitocondriale (definito come OCR che è resistente alla respiratoria mitocondriale veleni rotenone e myxothiazol) e rappresenta la massima H + generato per O 2 consumata per ogni substrato (max H + / O 2 ) (vedi 6), nonché la concentrazione di CO 2 dando luogo a H + alla temperatura sperimentale e pH (10 pH-pK 1 / (1 + 10 pH-pK 1). Per la piena ossidazione del glucosio, dell'ossigeno mitocondriale Consumo Rate (OCR) è esattamente uguale alla velocità di produzione di CO 2. Nel volume confinato test di misurazione del flusso extracellulare, CO 2 prodottid dalla respirazione rimane intrappolata nel terreno di coltura. La maggior parte del intrappolato CO 2 è idratata a H 2 CO 3, che poi dissocia in HCO 3 – + H +. Una piccola frazione rimane disciolto ma non idratata, e un'altra piccola frazione è idratata ma non dissociato, come dettato termodinamicamente dalla costante di equilibrio combinato di CO 2 idratazione e la dissociazione di HCO 3 – + H + a temperatura sperimentale (37 ° C) e pH (~ 7.4).
Così, l'equazione completa per il calcolo PPR g sottraendo PPR rispettivamente da PPR tot è:
PPR GLYC = ECAR tot / BP – (10 pH-PK 1 / (1 + 10 pH-PK 1)) (max H + / O 2) (OCR tot – OCR rot / myX) Equazione 5
ion questo modo, i tassi di respirazione e glicolisi, così come i loro associati tassi di produzione di ATP, può essere determinata quantitativamente da misure dirette (consumo di ossigeno, acidificazione extracellulare, capacità tampone) e l'importazione o il calcolo di altri valori richiesti (H + / O 2 , P / O, e l'equilibrio costante K 1) 6. L'esperimento descritto qui espande su tecniche standard per l'utilizzo del extracellulare flusso Analyzer come Seahorse XF24 10,11; per altri formati di misura del flusso extracellulare (ad esempio, XF e 96, o XFP), tutti i volumi sottostanti devono essere scalati in modo appropriato.
Il potere tampone del terreno di coltura può essere misurata con la costruzione di una curva standard direttamente nella piattaforma flusso extracellulare o separatamente utilizzando una sonda pH calibrata. Qui, tre opzioni per la misurazione buffer dal terreno di coltura di flusso extracellulare sono dati, compreso l'uso di tutti i iniezsulle porte dell'analizzatore flusso extracellulare con pozzetti dei campioni privi di cellule, o con solo l'ultimo di iniezione nella cella contenente pozzetti (sezione 1) o utilizzando una misurazione del pH esterno (sezione 2). Vedere il foglio allegato per l'intero calcolo dei dati di esempio.
Per misurare la potenza buffer utilizzando la funzionalità di rilevamento-pH dello strumento di flusso extracellulare, è più sicuro utilizzare i pozzi privi di cellule per minimizzare variazione del segnale. Tuttavia, entro l'errore, non esiste alcuna differenza statistica tra e cellule contenenti pozzetti durante l'esecuzione di questa misura acellulare (dati non mostrati). NOTA: La variazione descritto al punto 1.7 porta il vantaggio di contabilità per eventuali modifiche al buffer conferiti da composti aggiunti o dalla presenza di cellule, con lo svantaggio di segnale rumoroso. Tuttavia, come detto sopra, non state riscontrate differenze significative nel potere tampone calcolata tra la struttura senza cella mostrata in Tabella 1 eil design post-esperimento in Tabella 2, nelle condizioni sperimentali descritte qui.
Inoltre, su piccole serie ΔpH (<0,4 unità; sperimentalmente meglio limitate a 0,2 unità), la pendenza lineare, ottenuto riportando Δ mph / pmol H + approssima adeguatamente il rapporto tra la logaritmica ΔpH e [H +]. La pendenza di questa curva standard rappresenta quindi la potenza tampone del terreno di coltura in prova pH / nmol H + in 7 ml, o mpH / pmol H + in 7 ml. Si consiglia di aumentare il potere di buffering media o diminuire la densità delle cellule per i campioni che superano una variazione unitaria di 0,2 pH durante il tempo di misura. Il tempo di misura può essere diminuita, ma ciò potrebbe ridurre il tasso di acidificazione stato stazionario e di introdurre errori nel calcolo del tasso.
Acidificazione extracellulare è un'indicazione facilmente misurabile di cellulari tasso metabolico. Per determinare correttamente il tasso di glicolisi cellulare (come definito dalla produzione di lattato) è fondamentale conoscere la potenza tampone del terreno di coltura, e per convertire le misure di flusso extracellulari di consumo di ossigeno e acidificazione protone tassi di produzione. Eseguendo questo calcolo, l'acidificazione derivante da CO 2 rilasciato nel ciclo dell'acido citrico può essere sottratto, lasciando l'acidificazione che risulta dalla produzione di lattato.
Le molteplici modi qui riportati per misurare la potenza buffer per la correzione portano diversi vantaggi e svantaggi. Misura esterna utilizzando una sonda pH è estremamente preciso e riproducibile, ma non può riflettere piccole differenze di rilevamento pH introdotto dai fluorofori contenuti nella piastra di dosaggio, l'aggiunta di composti durante il dosaggio, o la presenza di tegli cellule stesse. L'in-piatto misure di pH affrontare questi problemi, ma anche introdurre i vari livelli di rumore sperimentale.
La correzione CO 2 per ECAR consente per la prima volta il calcolo univoca e quantitativa della glicolisi, e rivela variazione contributo respiratoria e glicolitico a ECAR totale durante il corso di un esperimento. Utilizzando Equazione 5 e le misure di OCR, ECAR, e il potere il buffering, glicolisi può essere calcolata utilizzando la semplice foglio di calcolo previsto (Tabella 6). Questo tasso può essere verificato misurazione del lattato post-hoc, se desiderato 6. Nelle cellule dove la via dei pentoso fosfati è molto attivo, l'uso di inibitori pathway come 6-aminonicotinamide può essere utile per isolare glicolisi. Calcolo dei contributi sia di CO 2 – e lattato di derivazione H + dal totale misurato extracellulare acidificazione Rate e ossigeno assorbita bobinaion Tasso è uno strumento prezioso per l'utilizzo dei dati di flusso extracellulari di rendere potenti e quantitativi dichiarazioni circa l'attività metabolica.
Utilizzando le procedure qui descritte, incluse varie modifiche per misurare il potere tampone, e ottimizzando l'esperimento flusso extracellulare per le cellule in esame e dati desiderati, il tasso di glicolisi in cellule intatte può essere quantificato in un'ampia gamma di condizioni sperimentali. Questo metodo è limitato alle cellule che possono crescere in coltura aderente sui (o cellule o organelli che possono essere rispettati) una superficie di polistirene. È più affidabile quando cellule coltivate sono omogenei e confluenti, se i dati utili possono essere ottenuti su una gamma di queste condizioni. I calcoli richiedono una certa conoscenza del metabolismo delle cellule, come max H + / O 2 varia da 0,65 a 1,0 per la completa ossidazione di substrati diversi e di più per ossidazione parziale 6, tuttavia, se le cellule sono known per ossidare il glucosio, un valore di 1,0 può essere assunto.
Sebbene pertinenti a tutti caratterizzazione metabolica, questo metodo può essere particolarmente utile se utilizzato in sistemi in cui il passaggio tra il metabolismo respiratorio e glicolitico mantenere approvvigionamento ATP cellulare è un fenotipo critica, compresa la caratterizzazione di cellule staminali e cellule tumorali derivate da tumore. Informazioni alterazioni metaboliche controllo in questi ed altri contesti consentirà un maggior grado di sofisticazione e precisione nel disegno sperimentale e l'analisi di questi tipi cellulari.
The authors have nothing to disclose.
We thank David A. Ferrick and David G. Nicholls for contributing to project conception and presentation, Renata L.S. Goncalves and Akos A. Gerencser for data not shown here and for helpful discussions, Barbara Liepe for XF24 consumables, and Andy Neilson for input in developing Eq. (5).
Pherastar FS | BMG | n/a | microplate reader |
Seahorse XF-24 | Seahorse Bioscience | n/a | extracellular flux instrument |
Seahorse XF assay plate | Seahorse Bioscience | V7-PS | consumable |
XF Calibrant | Seahorse Bioscience | 100840-000 | solution |
HCl standard | Sigma | 38280 | chemical |
oligomycin | Sigma | O4876 | chemical |
FCCP | Sigma | C2920 | chemical |
Rotenone | Sigma | R8875 | chemical |
Myxothiazol | Sigma | T5580 | chemical |
DMEM | Corning | 10-013-CV | medium component |
FBS | Corning | 35-010-CV | medium component |
penicillin/streptomycin | Corning | 30-002-CI | medium component |
carbonic anhydrase | Sigma | C2624 | chemical |
96-well assay plate | Corning | CLS3991 | consumable |
NAD+ | Sigma | N7004 | chemical |
LDH | Sigma | L1254 | chemical |