Summary

内毒素和DNA含量的空气采样滤波器分析

Published: March 07, 2016
doi:

Summary

Two complementary analyses of atmospheric biological particles from air sampled filters are described herein: the extraction and detection of endotoxin, and of DNA.

Abstract

室外气溶胶的研究通常使用的过滤器采样的颗粒物。此过程使得能够并行执行所收集的颗粒的各种特征。这里提出的方法的目的是获得从过滤器中提取的生物气溶胶的内毒素和DNA含量的高度准确和可靠的分析。高的分子量的有机分子,如脂多糖,从采样滤波器的提取包括摇动在一个无热原的水性介质中的样品。随后的分析是基于可使用浊度测量来检测酶反应。作为上采样滤波器的高有机含量的结果是,使用该最初设计用于土壤和修改,以提高DNA产量市售的DNA提取试剂盒进行DNA的样​​品的提取。的检测和使用定量聚合酶链reacti特定微生物物种的量化上(Q-PCR)分析中描述并与其他可用的方法进行对比。

Introduction

在过滤器上空气采样是在大气气溶胶研究的基本工具。1所述的取样过滤器可用于各种化学,物理和所收集的环境粒子的生物表征的起点。2-11这种方法的优点是,各种分析可离线对同一样品执行的。编译来自所有不同分析的数据使研究者获得的收集的颗粒和助剂的特性很好地理解在解决在大气科学的复杂问题。12,13例如,在相同的拍摄海洋和内陆空气采样期间可相对于所采样的颗粒的毒性和生物组合物。14本研究进行比较,脂多糖(LPS),对革兰氏阴性细菌细胞壁,也被称为内毒素组分,从过滤器中提取的采样在岸和在内陆部位,并使用该评价鲎变形细胞溶解物(LAL)测试。并行地,细菌含量的基因组的评估(总菌,革兰氏阴性,和蓝藻)是使用定量聚合酶链反应(Q-PCR)对同一样品执行的。在LAL试验是基于形成的加成从鲎, 美洲鲎阿米巴细胞的含水提取物之后,向含有内毒素的水溶液浊度的测量。样品在较高的内毒素浓度,更快浊度开发15的Q-PCR分析是基于发射作为特定的DNA片段被扩增荧光信号16由信号的实时监测在PCR指数期反应和校准用标准曲线,初始的DNA量进行量化。这两种的组合与他人一起分析,如别处详述,14可提供的内毒素和水平的良好估计样品中的源的细菌量。

这里提出的方法的目的是获得从过滤器中提取的生物气溶胶的内毒素和DNA含量的高度准确和可靠的分析。而用于采样气溶胶的物理和无机化学特性的方法是,最近,已开发了探讨其有机质成分众所周知,17一直存在很少研究气溶胶的生物成分上18为当前的理方法是通过在详细介绍,用于提取,分析和确定空气气溶胶的生物分数一个可靠的方法来解决这个间隙14

这里详述的方法可望找到在涉及过滤分析生物的室内和室外的气溶胶研究项目广泛使用。20-24

Protocol

注:在材料部分显示的所有材料,并在该协议中使用仪器的详细清单。 1.空气采样过滤器上过滤器的研制对于高流量采样,使用20.3点¯x25.4厘米2过滤器。选择,具体类型的过滤器是最适合的研究需要,以及在滤波器的截止大小,如果适用。1在此,使用石英微纤维过滤器。 用于有机和生物化合物采样预烘焙滤波器破坏有机残基。到预先烘?…

Representative Results

它是常见使用“离线”采样滤波器的分析来研究大气气溶胶(参见图2)。取样物质包括有机( 例如蛋白质,烃类分子,糖类)和无机( 例如金属,盐)含量的32化学分析。生物分析包括存活和非存活的微生物含量,使用DNA的方法或显微镜物种鉴定,以及基于DNA的定量。 <img alt="图2" src="/files/f…

Discussion

这部作品描述了收集器的气溶胶样品中既定量的内毒素和DNA提取存在和检测方法。该方法要求精确的例程和只要实验者附着在这里讨论了一些基本的和重要的点可以容易地进行。

用于内毒素检测步骤,请注意,裂解物溶液是相当粘稠,趋于在移液以产生气泡。它是难以除去你气泡,并且它们导致在微孔板阅读器值的变化。因此,要首先放置在样品中的板和仅确保所有的气泡?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

The authors thank Dr. Yoav Barak from the Chemistry Faculty, Weizmann Institute, for support and advice. This study was supported by the Israel Science Foundation (grant # 913/12), and by the Minerva Foundation with funding from the Federal German Ministry for Education and Research.

Materials

Filter sampling
HiVol 3000 – High Air Volume Sampler Ecotech
Quartz Microfiber Filters Whatman 1851-865 203mm X 254mm
ELF – Laboratory Chamber Furnaces Carbolite ELF 11series
Aluminum foil Opal
Name Company Catalog Number Comments
Endotoxin
Ethanol Sigma Aldrich 16368  Laboratory Reagent, 96%
Airstream Class II Biological Safety Cabinet AC-4E1 ESCO 10011712
Pyrotell -T Associates of Cape Cod, Inc. T0051
Control Standard Endotoxin Associates of Cape Cod, Inc. E0005-1 Escherichia coli O113:H10, 0.5 µg/vial 1 Pack
LAL Reagent Water Associates of Cape Cod, Inc. W0051
10 mL sterile syringe with Luer-Lok Tip Becton-Dickinson & Co. 309605
BD Precisionglide syringe needle Becton-Dickinson & Co. 305129 Sterile 
Parafilm-M sealing tape Parafilm P7543 Sigma catalog number
Microtubes Axigen MCT-200-C 2ml, pyrogen free
1.12 cm diameter Cork Borer Boekel Scientific 1601 BD Series – Steel Part of a cork borer set containing borers with various diameters. 
50 mm Petri Dish Miniplast Ein-Shemer 72050-01 Aseptic
Vortex Genie 2  Scientific Industries, inc. SI-0297
Microcentrifuge 5415 D Eppendorf 22621408
TC MicroWell 96 F SI w/lid Nunc 167008 Flat bottom wells (with lid (individually wrapped)), sterile, pyrogen free
Synergy HT Multi-Detection Microplate Reader Biotek 7091000
Name Company Catalog Number Comments
DNA
DNA away Sigma Aldrich 7010
Standard DNA of the microbial species of interest ATCC or other culture collection Either the appropriate microbial strain for DNA extraction or the extracted DNA
Neubauer-improved Marienfeld 640030 hemocytometer
TE buffer, Low EDTA Life Technologies 12090-015 10 mM Tris-HCl (pH 8.0) 0.1 mM EDTA 
Nuclease-free PCR-grade water  Sigma Aldrich 3315959001
PCR primers Sigma Aldrich Targets the microbial species of interest
Dual-Labeled Probes Sigma Aldrich Targets the microbial species of interest
Screw cap tubes Axigen ST-200-SS 2 mL 
PowerSoil DNA extraction kit  Mo Bio Laboratories 12888-100
Glass beads, acid-washed 425-600 Microns Sigma Aldrich G8772-100G
Glass beads, acid-washed <106 microns Sigma Aldrich G4649-100G
PowerSoil Solution C1 Mo Bio Laboratories 12888-100-1 Cell lysis buffer , Power soil Kit
Magic Touch ice bucket Bel-Art 18848-4001
Mini-Beadbeater-16 BioSpec 607EUR
StepOnePlus Real-Time PCR System Applied Biosystems 4376600
Fast SYBR Green Master Mix Applied Biosystems 4385612
TaqMan Gene Expression Master Mix Applied Biosystems 4370048
MicroAmp Fast Optical 96-Well Reaction Plate with Barcode, 0.1 mL Applied Biosystems 4346906
MicroAmp Splash-Free 96-Well Base Applied Biosystems 4312063
MicroAmp Optical Adhesive Film Applied Biosystems 4311971
Centrifuge 5810 R Eppendorf 5811 000.010 Rotor A-4-62 with MTP buckets 

Riferimenti

  1. Lodge, J. P. J. . Methods of Air Sampling and Analysis. , (1988).
  2. Costa, V., et al. Characteristics of carbonaceous aerosols in Emilia-Romagna (Northern Italy) based on two fall/winter field campaigns. Atmos. Res. , (2015).
  3. Brent, L. C. . Development, enhancement, and evaluation of aircraft measurement techniques for national ambient air quality standard criteria pollutants [dissertation]. , (2014).
  4. Okuda, T., Schauer, J. J., Shafer, M. M. Improved methods for elemental analysis of atmospheric aerosols for evaluating human health impacts of aerosols in East Asia. Atmos. Environ. 97, 552-555 (2014).
  5. Hospodsky, D., et al. Characterizing airborne fungal and bacterial concentrations and emission rates in six occupied children’s classrooms. Indoor air. , (2014).
  6. Bottos, E., Woo, A., Zawar-Reza, P., Pointing, S., Cary, S. Airborne Bacterial Populations Above Desert Soils of the McMurdo Dry Valleys, Antarctica. Microb. Ecol. 67, 120-128 (2014).
  7. Ovadnevaite, J., et al. Submicron NE Atlantic marine aerosol chemical composition and abundance: Seasonal trends and air mass categorization. J. Geophys. Res. Atmos. 119, (2014).
  8. Lodge, J. ES&T Books: Methods of Air Sampling and Analysis, 3rd ed. Environ. Sci. Technol. 23, 938 (1989).
  9. Pramod, K., Baron, P. A., Willeke, K. . Aerosol Measurement: Principles, Techniques, and Applications. , (2011).
  10. Vincent, J. H. . Aerosol Sampling: Science, Standards, Instrumentation and Applications. , (2007).
  11. Duquenne, P., Marchand, G., Duchaine, C. Measurement of Endotoxins in Bioaerosols at Workplace: A Critical Review of Literature and a Standardization Issue. Ann. Occup. Hyg. 57, 137-172 (2013).
  12. Okuda, T., Schauer, J. J., Shafer, M. M. Improved methods for elemental analysis of atmospheric aerosols for evaluating human health impacts of aerosols in East Asia. Atmos. Environ. 97, 552-555 (2014).
  13. Lewtas, J. Air pollution combustion emissions: Characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects. Mutat. Res.-Rev. Mutat. 636, 95-133 (2007).
  14. Lang-Yona, N., Lehahn, Y., Herut, B., Burshtein, N., Rudich, Y. Marine aerosol as a possible source for endotoxins in coastal areas. Sci. Total. Environ. 499, 311-318 (2014).
  15. Levin, J., Bang, F. B. Clottable protein in Limulus: its localization and kinetics of its coagulation by endotoxin. Thromb. Diath. Haemorrh. 19, 186-197 (1968).
  16. Heid, C. A., Stevens, J., Livak, K. J., Williams, P. M. Real time quantitative PCR. Genome Res. 6, 986-994 (1996).
  17. O’Dowd, C. D., de Leeuw, G. Marine aerosol production: a review of the current knowledge. Phil. Trans. R. Soc. A. 365, 1753-1774 (2007).
  18. O’Dowd, C. D., et al. Biogenically driven organic contribution to marine aerosol. Nature. 431, 676-680 (2004).
  19. Yang, R., Paparini, A., Monis, P., Ryan, U. Comparison of next-generation droplet digital PCR (ddPCR) with quantitative PCR (qPCR) for enumeration of Cryptosporidium oocysts in faecal samples. Int. J. Parasitol. 44, 1105-1113 (2014).
  20. Stetzenbach, L. D., Buttner, M. P., Cruz, P. Detection and enumeration of airborne biocontaminants. Curr. Opin. Biotechnol. 15, 170-174 (2004).
  21. Dannemiller, K. C., Gent, J. F., Leaderer, B. P., Peccia, J. Influence of housing characteristics on bacterial and fungal communities in homes of asthmatic children. Indoor air. , (2015).
  22. Yamamoto, N., Hospodsky, D., Dannemiller, K. C., Nazaroff, W. W., Peccia, J. Indoor emissions as a primary source of airborne allergenic fungal particles in classrooms. Environ. Sci. Technol. 49, 5098-5106 (2015).
  23. Yamamoto, N., et al. Particle-size distributions and seasonal diversity of allergenic and pathogenic fungi in outdoor air. ISME J. 6, 1801-1811 (2012).
  24. Karottki, D. G., et al. Cardiovascular and lung function in relation to outdoor and indoor exposure to fine and ultrafine particulate matter in middle-aged subjects. Environ Int. 73, 372-381 (2014).
  25. Guy, D., Hodges, N., Hanlon, G. Endotoxins and Depyrogenation. Industrial Pharmaceutical Microbiology: Standards and Controls. , 12.1-12.15 (2003).
  26. Thorne, P. S., Bartlett, K. H., Phipps, J., Kulhankova, K. Evaluation of Five Extraction Protocols for Quantification of Endotoxin in Metalworking Fluid Aerosol. Ann. Occup. Hyg. 47, 31-36 (2003).
  27. Thornton, B., Basu, C. Real-time PCR (qPCR) primer design using free online software. Biochem. Mol. Biol. Educ. 39, 145-154 (2011).
  28. Madigan, M. T., Clark, D. P., Stahl, D., Martinko, J. M. . Brock Biology of Microorganisms. , (2011).
  29. Watson, J. G., Chow, J. C. . Aerosol Measurement: Principles and Techniques. , 591-613 (2011).
  30. Mueller-Anneling, L., Avol, E., Peters, J. M., Thorne, P. S. Ambient endotoxin concentrations in PM10 from Southern California. Environ. Health Perspect. 112, 583-588 (2004).
  31. Hospodsky, D., Yamamoto, N., Peccia, J. Accuracy, Precision, and Method Detection Limits of Quantitative PCR for Airborne Bacteria and Fungi. Appl. Environ. Microbiol. 76, 7004-7012 (2010).
  32. Kutyavin, I. V., et al. 3′-Minor groove binder-DNA probes increase sequence specificity at PCR extension temperatures. Nucleic Acids Res. 28, 655-661 (2000).
  33. Brankatschk, R., Bodenhausen, N., Zeyer, J., Bürgmann, H. Simple absolute quantification method correcting for quantitative PCR efficiency variations for microbial community samples. Appl. Environ. Microbiol. 78, 4481-4489 (2012).
  34. Strober, W. Appendix 3B, Trypan Blue Exclusion Test of Cell Viability. Current Protocols in Immunology. , (2001).
  35. Hollander, A., Heederik, D., Versloot, P., Douwes, J. Inhibition and enhancement in the analysis of airborne endotoxin levels in various occupational environments. Am Ind Hyg Assoc J. 54, 647-653 (1993).
  36. Kennedy, S. . PCR troubleshooting and optimization : the essential guide. , (2011).
  37. Joiner, T. J., Kraus, P. F., Kupiec, T. C. Comparison of Endotoxin Testing Methods for Pharmaceutical Products. Int J Pharm Compd. 6, 408-409 (2002).
  38. Ebentier, D. L., et al. Evaluation of the repeatability and reproducibility of a suite of qPCR-based microbial source tracking methods. Water Res. 47, 6839-6848 (2013).

Play Video

Citazione di questo articolo
Lang-Yona, N., Mazar, Y., Pardo, M., Rudich, Y. Air-sampled Filter Analysis for Endotoxins and DNA Content. J. Vis. Exp. (109), e53444, doi:10.3791/53444 (2016).

View Video