Summary

在代谢分析准备线粒体富集级的<em>果蝇</em

Published: September 30, 2015
doi:

Summary

Mitochondria play central roles in the regulation of metabolism and homeostasis. Subtle changes in mitochondrial metabolism that affect organismal physiology could be difficult to detect in whole organism metabolomics studies. Here we describe an isolation method that enhances the detection of subtle metabolic shifts in Drosophila melanogaster.

Abstract

Since mitochondria play roles in amino acid metabolism, carbohydrate metabolism and fatty acid oxidation, defects in mitochondrial function often compromise the lives of those who suffer from these complex diseases. Detecting mitochondrial metabolic changes is vital to the understanding of mitochondrial disorders and mitochondrial responses to pharmacological agents. Although mitochondrial metabolism is at the core of metabolic regulation, the detection of subtle changes in mitochondrial metabolism may be hindered by the overrepresentation of other cytosolic metabolites obtained using whole organism or whole tissue extractions.

Here we describe an isolation method that detected pronounced mitochondrial metabolic changes in Drosophila that were distinct between whole-fly and mitochondrial enriched preparations. To illustrate the sensitivity of this method, we used a set of Drosophila harboring genetically diverse mitochondrial DNAs (mtDNA) and exposed them to the drug rapamycin. Using this method we showed that rapamycin modifies mitochondrial metabolism in a mitochondrial-genotype-dependent manner. However, these changes are much more distinct in metabolomics studies when metabolites were extracted from mitochondrial enriched fractions. In contrast, whole tissue extracts only detected metabolic changes mediated by the drug rapamycin independently of mtDNAs.

Introduction

此过程的目标是开发能产生足够的线粒体代谢物用于使用果蝇代谢组学研究富集线粒体级分。根据我们的经验,采用全细胞提取方法代谢组学分析是无法检测果蝇微妙的线粒体代谢物的变化。然而,线粒体分馏之前代谢分析增加了灵敏度,以确定线粒体代谢物变化。

线粒体是负责提供90%的细胞所需的正常功能1的能量的细胞器。在最近几年,已经认识到,线粒体在细胞和生物体功能的更加动态的作用不仅仅是产生三磷酸腺苷(ATP)和现在被确认为枢纽的代谢平衡2,3的调节。线粒体是一种共生的过程中,存款保险计划的结果tinct微生物系1.5十亿年前4合并〜。由于线粒体演变成真正的细胞器,基因的共生细菌在新兴的核基因组被合并。在动物今天,约1500线粒体蛋白是核编码的,而37个基因保留在线粒体DNA,其中13个编码线粒体蛋白质,是氧化磷酸化5的酶复合物的亚基。线粒体和核车厢之间的协调是必要的,以保持适当的线粒体功能。

使用此处描述的方法,我们能够探测果蝇线粒体代谢变化所造成的操纵线粒体和核基因组之间的协调。我们用果蝇的菌株,其中线粒体DNA,从它的姊妹品种D. simulans置于单个D.果蝇核背景6。这种“破坏”mitonuclear基因型相比D的 “天然”或共同进化mitonuclear基因型果蝇携带着其原生相同的核基因组果蝇线粒体DNA。该D.果蝇D. simulans线粒体DNA相差〜100个氨基酸和影响mitonuclear通信7,8> 500同义替换。我们生成的整个飞行提取物和线粒体富集提取物,研究代谢物的变化响应的药理压力。在这里,我们表明,使用线粒体富集的级分,当我们检测在本机,共同进化基因型携带D之间线粒体代谢物显着的变化果蝇线粒体DNA和破坏携带型D. simulans线粒体DNA。与此相反,这两种基因型之间的代谢变化是细微的使用,利用全动态提取正常的方法。因此,这种方法提供了一种路径理解线粒体DNA如何介导线粒体的变化响应于不同的药物。

Protocol

1.试剂及解决方案对飞食品和媒体准备热蝇成分11%的糖,2%自溶酵母,5.2%玉米粉,琼脂0.79%w / v的水在加热板设定为90℃。经常搅拌,直到得到均匀稍密混合物。准备的550毫升飞食品的终体积为总共100小瓶用5mL飞食品中的每个。 从加热源中删除,偶尔搅拌直到食物冷却到80℃并加入0.2%tegosept-4-羟基苯甲酸甲酯溶解在95%的乙醇。 在两个相等的体积分割的食物。添加…

Representative Results

使用的协议如上所述,我们进行了对线粒体富集级分和整个动物提取物的代谢组分析测试药物雷帕霉素对发散线粒体DNA 7的效果。我们通过在飞食品溶解药物递送200微米的雷帕霉素。蝇暴露于雷帕霉素10天。从整体蝇提取物和从线粒体提取物代谢物通过采用气相色谱质谱(GC / MS)和液相色谱 – 串联质谱(LC / MS / MS),使用标准的溶剂萃取方法获得。 <p class="j…

Discussion

在这个协议中最关键的步骤是:1)足够的饲养苍蝇充裕的空间。这是非常重要的不overpopulate的人口笼150多个苍蝇每一个; 2)改变笼经常避免食物竞争和营养应激的食物;和3)保持所有样品在4℃的线粒体级分的分离过程中,以确保完整性。此外,还建议以冷却该隔离缓冲器,洗涤缓冲液,并在使用前的玻璃 – 聚四氟乙烯Dounce匀浆。为了减少富集线粒体派别胞浆污染,从步骤3.5线粒体颗粒可以用洗涤…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

This work was supported by Adelphi University faculty development grant and grant R15GM113156 from NIGMS awarded to EVC, grant R01GM067862 from NIGMS and grant R01AG027849 from NIA awarded to DMR.

Materials

0.2% tegosept -methyl 4-hydroxybenzoate  VWR AAA14289
Ethanol Sigma-Aldrich 792799
Mannitol Sigma-Aldrich M4125
Sucrose Sigma-Aldrich S9378
3-(N-morpholino) propanesulfonic acid (MOPS) Sigma-Aldrich M1254 
Ethylenediaminetetraacetic acid (EDTA) Sigma-Aldrich 38057 
Bovine serum albumin (BSA) Sigma-Aldrich 5470
KCL Sigma-Aldrich P9333
Tris HCL  Sigma-Aldrich RES3098T-B7
KH2PO4 Sigma-Aldrich 1551139
CO2 pads to anesthetize flies Tritech Research MINJ-DROS-FP
1 liter cage  Web Restaurant Store 999RD32
1 liter cage lid  Web Restaurant Store 999LRD
a glass-teflon dounce homogenizer  Fisher Scientific NC9661231
Sodium hydroxide Sigma-Aldrich S8045
rapamycin  LC Laboratories  R-5000
anti-porin MitoSciences MSA03
anti-alpha tubulin Developmental Studies Hybridoma Bank 12G10
Pierce™ BCA Protein Assay Kit  Thermo Scientific  23225
CO2 pad Tritech Research, Inc MINJ-DROS-FP
filter flask enasco SB08184M
rubber stopper enasco S08512M

Riferimenti

  1. Scheffler, I. E. . Mitochondria (Scheffler, Mitochondria). , 484 (2007).
  2. Guarente, L. Mitochondria–a nexus for aging, calorie restriction, and sirtuins. Cell. 132 (2), 171-176 (2008).
  3. Raimundo, N. Mitochondrial pathology: stress signals from the energy factory. Trends in molecular medicine. 20 (5), 282-292 (2014).
  4. Embley, T. M., Martin, W. Eukaryotic evolution, changes and challenges. Nature. 440 (7084), 623-630 (2006).
  5. Lane, N., , . Power, Sex, Suicide: Mitochondria and the Meaning of Life. 368, (2006).
  6. Montooth, K. L., Meiklejohn, C. D., Abt, D. N., Rand, D. M. Mitochondrial-nuclear epistasis affects fitness within species but does not contribute to fixed incompatibilities between species of Drosophila. Evolution; international journal of organic evolution. 64 (12), 3364-3379 (2010).
  7. Villa-Cuesta, E., Holmbeck, M. A., Rand, D. M. Rapamycin increases mitochondrial efficiency by mtDNA-dependent reprogramming of mitochondrial metabolism in Drosophila. Journal of cell science. 127 (Pt 10), 2282-2290 (2014).
  8. Zhu, C. -. T., Ingelmo, P., Rand, D. M. G×G×E for Lifespan in Drosophila: Mitochondrial, Nuclear, and Dietary Interactions that Modify Longevity. PLoS genetics. 10 (5), e1004354 (2014).
  9. Madala, N. E., Piater, L. A., Steenkamp, P. A., Dubery, I. A. Multivariate statistical models of metabolomic data reveals different metabolite distribution patterns in isonitrosoacetophenone-elicited Nicotiana tabacum and Sorghum bicolor cells. SpringerPlus. 3, 254 (2014).
  10. Hogeboom, G. H., Schneider, W. C., Pallade, G. E. Cytochemical Studies Of Mammalian Tissues I . Isolation Of Intact Mitochondria From Rat Liver Some Biochemical Properties Of Mitochondria And Submicroscopic Particulate Material. Journal of Biological Chemistry. 172, 619-635 (1948).
  11. Frezza, C., Cipolat, S., Scorrano, L. Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts. Nature protocols. 2 (2), 287-295 (2007).
  12. Corcelli, A., Saponetti, M. S., et al. Mitochondria isolated in nearly isotonic KCl buffer: focus on cardiolipin and organelle morphology. Biochimica et biophysica acta. 1798 (3), 681-687 (2010).
  13. Roede, J. R., Park, Y., Li, S., Strobel, F. H., Jones, D. P. Detailed mitochondrial phenotyping by high resolution metabolomics. PloS one. 7 (3), e33020 (2012).

Play Video

Citazione di questo articolo
Villa-Cuesta, E., Rand, D. M. Preparation of Mitochondrial Enriched Fractions for Metabolic Analysis in Drosophila. J. Vis. Exp. (103), e53149, doi:10.3791/53149 (2015).

View Video