Summary

分析<em>小肠结肠炎耶尔森菌</em>效应易位到宿主细胞中使用β-内酰胺酶效应融合体

Published: October 13, 2015
doi:

Summary

Effector translocation into host cells via a type III secretion system is a common virulence strategy among gram-negative bacteria. A beta-lactamase effector fusion based assay for quantitative analysis of translocation was applied. In Yersinia infected cells, conversion of a FRET reporter by the beta-lactamase is monitored using laser scanning microscopy.

Abstract

许多革兰氏阴性细菌包括致病耶尔森菌属使用III型分泌系统,转运的效应蛋白到真核靶细胞。在宿主细胞内的效应蛋白操纵细胞功能的细菌的益处。为了更好地理解III型分泌宿主细胞相互作用,灵敏,准确的检测过程中控制测量易位是必需的。我们在这里描述了基于一小肠结肠炎耶尔森效应蛋白片段的融合的测定法(耶尔森外蛋白; YopE)的应用程序。用TEM-1β-内酰胺酶的易位的定量分析的测定法,依赖于细胞裂解渗透剂FRET染料(CCF4 / AM)通过易位β-内酰胺酶的融合。 CCF4的由β-内酰胺酶的头孢菌素核的裂解之后,从香豆素FRET荧光素被破坏,香豆素结构部分的激励导致的蓝色荧光发射。该方法的不同应用在文献中突出了其通用性已被描述。该方法允许易位体外的分析以及在体内,例如,在小鼠模型。可以用酶标仪,流式细胞仪或荧光显微镜进行检测荧光信号。在由不同耶尔森突变这里描述的,在效应子融合的体外易位至HeLa细胞中设置由激光扫描显微镜监测。通过实时β-内酰胺酶的效应融合录制FRET记者细胞内转化提供了可靠的定量结果。我们在这里展示示范性数据,由Y.展示增加易位 YopE突变体比野生型菌株。

Introduction

III型分泌系统,它们由不同的属的革兰氏阴性菌,直接递送细菌编码的效应蛋白到真核靶细胞利用专门蛋白出口的机器。而分泌机制本身是高度保守的,专门集效应蛋白进化的不同细菌种类中,以操纵细胞信号途径和促进特定细菌的毒力的策略1。万一耶尔森氏菌,最多七个效应蛋白,所谓Yops( 耶尔森氏菌外蛋白),被易位在宿主细胞接触并一起行动颠覆免疫细胞反应,如吞噬作用和细胞因子产生, 即,以允许细菌的胞外生存2-4。易位的处理严格控制在不同阶段5。它被确定,T3SS初级活化通过它的接触到目标策触发LL 6。然而,这种引发的精确机制仍有待阐明。在耶尔森所谓微调易位的第二电平由上调或下调细胞的Rho GTP结合蛋白的Rac1或RhoA的活性实现的。 Rac1的激活例如通过侵袭素或细胞毒性坏死因子Y(CNF-Y)导致增加的易位7-9,而GAP(GTP酶活化蛋白质)易位YopE的功能下调Rac1的活性,因此通过一个负反馈型降低易位机制10,11。

有效和精确的方法是前提,以研究如何易位是在小肠结肠炎耶尔森氏宿主细胞相互作用调控。许多不同的系统已被用于这个目的,每个具有特定的优点和缺点。一些方法依赖于裂解感染的细胞,但不细菌由不同的去污剂随后免疫印迹分析。钍这些方法Ë共同的缺点是次要的,但不可避免的细菌裂解潜在污染的细胞裂解液与细菌相关的效应蛋白。然而,提出了治疗细胞用蛋白酶K以降解细胞外的效应蛋白和后续使用毛地黄皂苷为真核细胞的选择性裂解,以尽量减少此问题12。重要的是,这些检测主要依赖于高品质抗效应的抗体,其中大多是尚未投放市场。企图利用效应蛋白翻译融合和荧光蛋白GFP的像并监控易位没有成功可能是由于该荧光蛋白的球状三级结构和分泌装置的无法分泌13之前展开它们。 百日咳毒素然而,有几个不同的记者的标签,如CYA(钙调蛋白依赖的腺苷酸环化酶)域cyclolysin 14或闪存标签被成功用于分析易位。在前者的测定CYA的酶活性被用于扩增胞内融合蛋白的信号,而闪光标签,在很短的四半胱氨酸(4Cys)基序标签,允许与biarsenical染料的Flash标签,而不会干扰分泌的过程中15。

这里所应用的方法是由夏邦杰等人报道首次并基于对细胞内的荧光共振能量转移(FRET)染料CCF4通过易位效应TEM-1β-内酰胺酶融合体16(图1A)的转换。 CCF4 / AM是其中香豆素衍生物(供体)和荧光素部分(受体)由头孢菌素核连接的细胞穿透物化合物。在被动进入真核细胞,所述非荧光酯化CCF4 / AM化合物由蜂窝酯酶处理以带电和荧光CCF4从而被困内的小区。激发香豆素结构部分在405nm处的结果的FRET的荧光素部分,其在530nm发射的绿色荧光信号。头孢菌素核的β-内酰胺酶的FRET的裂解之后被破坏,香豆素结构部分的激励导致的蓝色荧光发射at460纳米。该方法的不同应用在文献中突出了其通用性已被描述。该方法允许易位体外的分析以及在体内,例如,该技术被用来在小鼠感染模型来识别体内 17-19针对易位的白细胞群。信号读出可使用酶标仪,流式细胞仪或荧光显微镜进行。值得注意的是,该方法还提供了感染过程20,21期间监视易位实时由活细胞显微术的可能性。这里激光扫描荧光显微镜涂敷了用于readou荧光信号吨,因为它提供最高的灵敏度和精确度。特别是,能力调整与纳米精度与高敏感检测器组合的发射窗有助于优化荧光检测和最小化串扰。此外,该显微镜的设置可适于易位实时监测和有可能允许对宿主 – 病原体相互作用的在细胞水平上同时分析。

在这项研究中易位Y.野生型菌株和YopE缺失突变体表现出hypertranslocator型10,11示范性地进行了分析。

Protocol

1.峰值发射和串扰测定(参见图2) 为了确定该发射峰和施主之间的串扰(香豆素衍生物V450)和受体(荧光素)的染料量,执行标记的细胞都在405nm激发个体荧光团的光谱扫描。 确定每种染料的将被用于供体和受体通道(这里455-465纳米和525-535纳米)的峰在10纳米的带宽。积归一化强度在波长,并计算在受体通道,反之亦然(图2)的串扰供体染料的平均百分比。 <…

Representative Results

为了证明所描述的方法的能力进行定量分析的效应易位至靶细胞,二耶尔森株不同易位动力学进行了研究:Y。菌野生型菌株WA-314(血清型O8,窝藏的毒力质粒pYVO8 22)及其衍生物WA-314ΔYopE(WA-314窝藏pYVO8ΔYopE23)。此前的研究显示,Y.菌突变体缺乏功能YopE表现出显著高于烨转率10。两个菌株用为YopE和TEM-1β-内酰胺酶(PMK-BLA)17的 n-末端分泌信号的…

Discussion

我们在这里成功地应用于基于TEM-1β-内酰胺酶报告基因分析的效应易位中用 Y定量分析 。这种敏感,特异的和相对简单的技术的许多不同的变化,在文献中已经描述。在这项研究中的激光扫描显微镜进行最灵敏和最精确的检测荧光信号的进行。专门校正的供体和受体染料和单独调节检测的带宽之间的串扰允许测量更高的精度相比该方法的其它变型。结果清楚地表明,该方法是能够?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

We thank Dr. Antonio Virgilio Failla for providing the FRET acquisition quantification algorithm and Erwin Bohn for providing the pMK-bla and pMK-ova constructs.

Materials

LB-Agar Roth X969.2
LB-Medium Roth X968.2
Dulbecco’s Phosphate Buffered Saline Sigma-Aldrich D8662-500ML
96-well plate (black, clear bottom) Greiner Bio One 655087
DMEM, high glucose, GlutaMAX Supplement, pyruvate Gibco/Life Technologies 31966-047
Probenecid Sigma-Aldrich P8761-25G
LiveBLAzer FRET-B/G Loading Kit with CCF4-AM Life Technologies K1095
Lectin from Triticum vulgaris (wheat) FITC conjugate Sigma-Aldrich L4895 Used for peak emission and cross-talk determination
V450 Rat anti-Mouse CD8a BD Bioscience 560469 Used for peak emission and cross-talk determination
Immersol W immersion oil  Zeiss 444969-0000-000 Refractive index = 1.3339 @ 23 °C
TCS SP5 II confocal laser scanning microscope Leica microsystems 2x GaAsP-Hybrid detectors, 4 channel spectrometer, acusto optical beam spliter, motorized XY stage, adjustable pinhole, objective 20x HC PL APO CS IMM/CORR, 405nm diode laser 50mW
Imaris 7.6 software Bitplane Plugins included ImarisXT and MeasurementPro
MatLab compiler runtime MathWorks
Prism 5 GraphPad software

Riferimenti

  1. Galan, J. E., Lara-Tejero, M., Marlovits, T. C., Wagner, S. Bacterial Type III Secretion Systems: Specialized Nanomachines for Protein Delivery into Target Cells. Annu Rev Microbiol. 68, 415-438 (2014).
  2. Aepfelbacher, M., Trasak, C., Ruckdeschel, K. Effector functions of pathogenic Yersinia species. Thromb Haemost. 98 (3), 521-529 (2007).
  3. Heesemann, J., Sing, A., Trulzsch, K. Yersinia’s stratagem: targeting innate and adaptive immune defense. Curr Opin Microbiol. 9 (1), 55-61 (2006).
  4. Viboud, G. I., Bliska, J. B. Yersinia outer proteins: role in modulation of host cell signaling responses and pathogenesis. Annu Rev Microbiol. 59, 69-89 (2005).
  5. Dewoody, R. S., Merritt, P. M., Marketon, M. M. Regulation of the Yersinia type III secretion system: traffic control. Front Cell Infect Microbiol. 3, 10-3389 (2013).
  6. Pettersson, J., et al. Modulation of virulence factor expression by pathogen target cell contact. Science. 273 (5279), 1231-1233 (1996).
  7. Schweer, J., et al. The cytotoxic necrotizing factor of Yersinia pseudotuberculosis (CNFY) enhances inflammation and Yop delivery during infection by activation of Rho GTPases. PLoS Pathog. 9 (11), e1003746 (2013).
  8. Wolters, M., et al. Cytotoxic necrotizing factor-Y boosts Yersinia effector translocation by activating Rac protein. J Biol Chem. 288 (32), 23543-23553 (2013).
  9. Mejia, E., Bliska, J. B., Viboud, G. I. Yersinia controls type III effector delivery into host cells by modulating Rho activity. PLoS Pathog. 4 (1), e3 (2008).
  10. Aili, M., et al. Regulation of Yersinia Yop-effector delivery by translocated YopE. Int J Med Microbiol. 298 (3-4), 183-192 (2008).
  11. Gaus, K., et al. Destabilization of YopE by the ubiquitin-proteasome pathway fine-tunes Yop delivery into host cells and facilitates systemic spread of Yersinia enterocolitica in host lymphoid tissue. Infect Immun. 79 (3), 1166-1175 (2011).
  12. Nordfelth, R., Wolf-Watz, H. YopB of Yersinia enterocolitica is essential for YopE translocation. Infect Immun. 69 (5), 3516-3518 (2001).
  13. Radics, J., Konigsmaier, L., Marlovits, T. C. Structure of a pathogenic type 3 secretion system in action. Nat Struct Mol Biol. 21 (1), 82-87 (2014).
  14. Sory, M. P., Cornelis, G. R. Translocation of a hybrid YopE-adenylate cyclase from Yersinia enterocolitica into HeLa cells. Mol Microbiol. 14 (3), 583-594 (1994).
  15. Schlumberger, M. C., et al. Real-time imaging of type III secretion: Salmonella SipA injection into host cells. Proc Natl Acad Sci U S A. 102 (35), 12548-12553 (2005).
  16. Charpentier, X., Oswald, E. Identification of the secretion and translocation domain of the enteropathogenic and enterohemorrhagic Escherichia coli effector Cif, using TEM-1 beta-lactamase as a new fluorescence-based reporter. J Bacteriol. 186 (16), 5486-5495 (2004).
  17. Koberle, M., et al. Yersinia enterocolitica targets cells of the innate and adaptive immune system by injection of Yops in a mouse infection model. PLoS Pathog. 5 (8), e1000551 (2009).
  18. Geddes, K., Cruz, F., Heffron, F. Analysis of cells targeted by Salmonella type III secretion in vivo. PLoS Pathog. 3 (12), e196 (2007).
  19. Marketon, M. M., DePaolo, R. W., DeBord, K. L., Jabri, B., Schneewind, O. Plague bacteria target immune cells during infection. Science. 309 (5741), 1739-1741 (2005).
  20. Mills, E., Baruch, K., Aviv, G., Nitzan, M., Rosenshine, I. Dynamics of the type III secretion system activity of enteropathogenic Escherichia coli. MBio. 4 (4), (2013).
  21. Mills, E., Baruch, K., Charpentier, X., Kobi, S., Rosenshine, I. Real-time analysis of effector translocation by the type III secretion system of enteropathogenic Escherichia coli. Cell Host Microbe. 3 (2), 104-113 (2008).
  22. Heesemann, J., Laufs, R. Construction of a mobilizable Yersinia enterocolitica virulence plasmid. J Bacteriol. 155 (2), 761-767 (1983).
  23. Zumbihl, R., et al. The cytotoxin YopT of Yersinia enterocolitica induces modification and cellular redistribution of the small GTP-binding protein RhoA. J Biol Chem. 274 (41), 29289-29293 (1999).

Play Video

Citazione di questo articolo
Wolters, M., Zobiak, B., Nauth, T., Aepfelbacher, M. Analysis of Yersinia enterocolitica Effector Translocation into Host Cells Using Beta-lactamase Effector Fusions. J. Vis. Exp. (104), e53115, doi:10.3791/53115 (2015).

View Video