Insight into the complex actions of the brain requires advanced research tools. Here we demonstrate a novel silk-collagen-based 3D engineered model of neural tissue resembling brain-like architecture. The model can be used to study neuronal network assembly, axonal guidance, cell-cell interactions and electrical activity.
Despite huge efforts to decipher the anatomy, composition and function of the brain, it remains the least understood organ of the human body. To gain a deeper comprehension of the neural system scientists aim to simplistically reconstruct the tissue by assembling it in vitro from basic building blocks using a tissue engineering approach. Our group developed a tissue-engineered silk and collagen-based 3D brain-like model resembling the white and gray matter of the cortex. The model consists of silk porous sponge, which is pre-seeded with rat brain-derived neurons, immersed in soft collagen matrix. Polarized neuronal outgrowth and network formation is observed with separate axonal and cell body localization. This compartmental architecture allows for the unique development of niches mimicking native neural tissue, thus enabling research on neuronal network assembly, axonal guidance, cell-cell and cell-matrix interactions and electrical functions.
중추 신경계 (CNS)의 구조적 기능적, 감염성 또는 퇴행성 혈관을 포함하는 다양한 질환에 의해 영향을받을 수있다. 추정 6백80만명 1은 전 세계적으로 성장하고 사회 경제적 부담을 나타내는 신경 질환의 결과로 매년 죽는다. 그러나, 장애의 몇 가지 가능한 치료를해야합니다. 따라서, 신경계 질환을 앓고있는 환자를위한 치료 전략의 혁신적인 중요한 필요성이있다. 불행히도, 많은 CNS 타겟 치료제 인해 생리 학적으로 관련 기능 판독과 급성 및 만성 영향 평가를 허용하지 않는 부적절한 전임상 연구 모델의 활용에 부분적으로 임상 시험 중에 실패합니다.
지난 수십 년간 상당한 연구 노력에도 불구하고, CNS의 구조와 기능에 대해 알 수없는 방대한있다. 더 많은 지식을 습득하기 위하여, 동물 모델은 종종 우리 아르ED 특히 전임상 연구에서, 이러한 외상성 뇌 손상 (TBI), 또는 치매 병리 상태를 모델링한다. 그러나 동물은 인간에서 모두 중추 신경계의 해부학에서뿐만 아니라, 기능, 유전자 발현 및 대사 2-4에 유의 한 차이. 한편, 2D 체외 배양 세포 생물학을 연구하는 일반적인 방법이고 정기적 약물 발견에 사용된다. 그러나, 2 차원 세포 배양은 복잡하고 인간의 두뇌 5-7에 비해 생체 적합성이 부족하다. 저가 및 단순성 2D 세포 배양 연구 또는 동물 모델에 의해 제공되는 복잡성을 대신 없지만, 3 차원의 조직 공학은 시험 관내 및 생체 내 접근법에서 2D 사이에 존재하는 간극을 폐쇄 개선 연구 모델을 생성 할 수있다. 3 차원의 조직 공학은 3D 세포 – 세포 상호 작용에 의해 제공되는 지지체 생체 외 단서에 의해 달성 이상의 생리 학적으로 관련 실험 조건을 제공한다. Desp3D 배양 값 뒤에 상당한 증거 ITE, 거기 이러한 줄기 세포 유래 organoid 배양 8-10 같은 몇 3D CNS 조직 모델 11 neurospheroids는 현재 및 하이드로 겔 배양 12,13 분산. 다층 리소그래피 (14), 및 3D 인쇄 (15) 등의 고급 기술 방법은 폐, 간 및 신장 조직을 연구에 이용되어왔다. 그러나, 대뇌 피질의 구조 생물학을 흉내 낸으로 구획 된 신경 세포의 성장을 허용 3D CNS 모델의 부족이있다. 신경 세포 기관에서 신경 돌기의 분리 된 성장은 이전 축삭 기관의 추적, 칼슘 유입, 네트워크 아키텍처 및 활동의 연구를 허용 미세 (16, 17)를 사용하여 2D 문화에서 증명되었다. 이 아이디어는 세포체와 축삭 책자는 뇌 (18)의 계층 구조를 흉내 낸 다른 구획에있는 3D 편광 신경 조직을 개발하기 위해 우리에게 영감을 </sup>. 우리의 접근은 제한된 용적의 셀을 고밀도로 수용하고 콜라겐 겔에 치밀한 축삭 네트워크의 생장을 허용 고유 실크 골격 설계의 사용에 기초한다. 여기에서 우리는 인공 지지체 제조 및 신경 세포 배양을 포함한 뇌와 같은 조직의 전체 조립 과정을 보여줍니다.
Here we described the guidelines to assemble a compartmentalized 3D brain-like tissue model. The model is characterized by dense polarized culture of neurons resulting in the development of two morphologically different compartments: one containing densely packed cell bodies, second containing pure axonal networks. Overall, the scaffold architecture and growth pattern mimic brain cortical tissue including the six laminar layers and white matter tracts21.
The donut-shaped silk protein-based tissue model allows for modifications and tuning of mechanical properties, versatile structural forms, hydrogel fillers and cellular components. Thus, this tissue model establishes a base platform for a wide range of studies. Silk is a favorable candidate for biomaterial platforms due to its biocompatibility, aqueous-based processing, and robust mechanical and degradation properties22. The silk matrix also serves as a stable anchor to reduce collagen gel contraction over time in culture. The properties such as silk concentration and porosity of the scaffold used in this model have been previously adjusted to achieve optimal cell growth and mechanical properties resulting in brain-like tissue elasticity18,23,24. We suggest to keep these parameters constant to ensure the successful outcome and reproducibility of the experiments.
The 3D neuronal network formation was achieved by combining two types of biomaterials with different mechanical properties: a stiff scaffold to provide neuronal anchoring and a softer gel matrix to permit axon penetration and connectivity in 3D. Selective material preferences of the silk scaffold and soft hydrogel provide the underlying principle for compartmentalizing the neurons from the axonal connections. Due to the inert nature of the silk scaffold, functionalization with poly-D-lysine is required for neuronal attachment. However, other cell adhesion promoting factors can be applied such as RGD25 or fibronectin26. To achieve the 3D network formation the silk scaffold needs to be filled with hydrogel in a timely manner as soon as neurons are attached to the scaffold. Likewise, the collagen matrix filler can be replaced by other hydrogels, thus allowing the study of the influence of 3D extracellular environments on axonal network formation to serve as a platform to evaluate novel hydrogels in terms of neuronal compatibility. Additionally, apart from rat cortical neurons other neuronal sources such as hippocampal neurons or induced pluripotent cell (iPSc)-derived neurons can be utilized. Moreover, the tissue model can be used to study heterocellular interactions by including glial cells along with neurons and to build more complex brain-like tissue.
As shown previously, our model can be utilized to evaluate neuronal functionality in 3D microenvironment with a variety of assays such as cell viability, gene expression, LC-MS/MS and electrophysiology, thus demonstrating physiological relevance of the model18. Other methods, which are frequently utilized to evaluate 3D tissue-engineered constructs, such as immunostaining and microscopy8,9,11 can also be used to assess cell distribution and extent of axonal network formation. However, it has to be noted, that due to the high density of the collagen matrix, the penetration of antibodies and depth of the imaging is limited to few hundred micrometers. Moreover, the signal to noise ratio may be affected by nonspecific background fluorescence. This can be overcome by using lipophilic cell tracers and genetically expressed fluorescent proteins which diminish the need for immunostaining11. Alternatively, the imaging can be performed with 2-photon microscopy instead of usual one-photon technique, which may reduce the signal loss, photobleaching, and can be extended to several hundred micrometers of depth.
Summarizing, the silk and collagen-based brain-like tissue offers a robust platform to study neuronal networks in 3D and is a starting point for the development of more advanced models of neurological disorders in the future. Independent from the mode of evaluation, the relative simplicity of this tissue model supports its utility, success and reproducibility.
The authors have nothing to disclose.
We thank the laboratory of Dr. Stephen Moss for providing embryonic rat brain tissues. M.D.T. designed the original protocol. This work was funded by National Institutes of Health P41 Tissue Engineering Resource Center Grant EB002520. K.C. was supported with Postdoctoral Fellowship from German Research Foundation (DFG) (CH 1400/2-1).
Na2CO3 | Sigma-Aldrich | 223530 | – |
LiBr | Sigma-Aldrich | 213225 | – |
MWCO 3500 dialysis cassettes | Thermo Fisher | 66110 | – |
Heating plate | Fisher Scientific | Isotemp | – |
Centrifuge 5804 R | Eppendorf | – | – |
Sieve | Fisher Scientific | – | No. 270, No. 35, No. 30 |
PTFE mold | – | – | made in house (Figure 1) 10 cm diameter, 2 cm height |
NaCl | Sigma-Aldrich | 71382 | – |
Biopsy Punch 5mm | World Precision Instrument | 501909 | – |
Biopsy Punch 2mm | World Precision Instrument | 501908 | – |
poly-D-lysine | Sigma-Aldrich | P6407-5MG | final concentration 10 ug/ml, dissolved in water |
PBS | Sigma-Aldrich | D1283-500ML | – |
Trypsin | Sigma-Aldrich | T4049-500ML | – |
DNase | Roche | 10104159001 | final concentration 0.3% |
Soybean protein | Sigma-Aldrich | T6522-100MG | final concentration 1 mg/ml |
Neurobasal medium | Gibco | 21103049 | warm up to 37°C before use |
B27 supplement 50x | Gibco | 17504-044 | – |
Glutamax | Gibco | 35050-061 | – |
Penicilin Streptomycin | Corning | 30-002-CI | – |
Collagen I, rat tail, 100 mg | Corning | 354236 | final concentration 3 mg/ml |
NaOH | Sigma-Aldrich | S2770 | corrosive |
Propidium Iodide | Sigma-Aldrich | P4170-10MG | toxic |
Fluorescein Diacetate | Sigma-Aldrich | F7378-5G | – |
Olympus MVX10 | Olympus | – | – |
Paraformaldehyde | Sigma-Aldrich | P6148 | toxic, final concentration 4% |
Bovine Serum Albumin | Sigma-Aldrich | A7906-10G | – |
anti-βIIITubulin antibody | Sigma-Aldrich | T2200 | rabbit 1:500 |
anti-rabbit Alexa-546 | Molecular Probes | A11010 | goat 1:250 |
goat serum | Sigma-Aldrich | G9023-5ML | – |
Leica SP2 confocal microscope | Leica | – | objective 20x |
QIAshredder | Qiagen | 79654 | – |
AllPrep DNA/RNA/Protein Mini Kit | Qiagen | 80004 | – |
Ethyl alcohol, Pure | Sigma-Aldrich | E7023 | – |
2-Mercaptoethanol | Sigma-Aldrich | 63689 | |
NanoDrop 2000c/2000 UV-Vis Spectrophotometer | Thermo Scientific | – | – |
BCA protein assay | Thermo Scientific | 23225 | – |
Plate reader Spectramax M2 | Molecular Devices | – | absorbance 562 nm |
Micro Scissors, Economy, Vannas-type | TedPella | 1346 | – |