Summary

إنشاء ذات الصلة سريريا<em> السابقين فيفو</em> موك الساد نموذج جراحة للتحقيق الظهارية إصلاح الجرح في المكروية الأم

Published: June 05, 2015
doi:

Summary

Described here is the establishment of a clinically relevant ex vivo mock cataract surgery model that can be used to investigate mechanisms of the injury response of epithelial tissues within their native microenvironment.

Abstract

The major impediment to understanding how an epithelial tissue executes wound repair is the limited availability of models in which it is possible to follow and manipulate the wound response ex vivo in an environment that closely mimics that of epithelial tissue injury in vivo. This issue was addressed by creating a clinically relevant epithelial ex vivo injury-repair model based on cataract surgery. In this culture model, the response of the lens epithelium to wounding can be followed live in the cells’ native microenvironment, and the molecular mediators of wound repair easily manipulated during the repair process. To prepare the cultures, lenses are removed from the eye and a small incision is made in the anterior of the lens from which the inner mass of lens fiber cells is removed. This procedure creates a circular wound on the posterior lens capsule, the thick basement membrane that surrounds the lens. This wound area where the fiber cells were attached is located just adjacent to a continuous monolayer of lens epithelial cells that remains linked to the lens capsule during the surgical procedure. The wounded epithelium, the cell type from which fiber cells are derived during development, responds to the injury of fiber cell removal by moving collectively across the wound area, led by a population of vimentin-rich repair cells whose mesenchymal progenitors are endogenous to the lens1. These properties are typical of a normal epithelial wound healing response. In this model, as in vivo, wound repair is dependent on signals supplied by the endogenous environment that is uniquely maintained in this ex vivo culture system, providing an ideal opportunity for discovery of the mechanisms that regulate repair of an epithelium following wounding.

Introduction

و، جراحة الساد وهمية ذات الصلة سريريا، وقد وضعت خارج الحي الظهارية نموذج التئام الجروح الموصوفة هنا إلى توفير أداة للتحقيق في الآليات التي تنظم إصلاح الأنسجة الظهارية في استجابة لإصابة. السمات الرئيسية التي كانت تهدف لفي خلق هذا النموذج وشملت 1) توفير الظروف التي تتكرر بشكل وثيق الاستجابة في الجسم الحي لاصابة في إعداد ثقافة، 2) سهولة تحوير العناصر التنظيمية للإصلاح، و3) القدرة على صورة عملية الإصلاح، في مجملها، في الوقت الحقيقي. التحدي، لذلك، كان لخلق نموذج الثقافة التي كان من الممكن للدراسة، والتلاعب، وإصلاح الجرح الظهارية في المكروية في الخلايا الأم. توافر هذا النموذج الجرح إصلاح يفتح إمكانيات جديدة لتحديد العظة الإشارات الداخلية من مصفوفة البروتينات، السيتوكينات وكيموكينات التي تنظم عملية الإصلاح. وبالإضافة إلى ذلك، فإن نموذج مثالي لدراسة كيف يمكن لن ظهارة قادرة على التحرك في ورقة جماعية لإعادة يغطي بالنسيج الظهاري-منطقة الجرح 2،3، وتحديد نسب الخلايا زعيم الوسيطة على حافة الجرح التي تعمل في توجيه الهجرة الجماعية للظهارة أصيب 4. يوفر هذا النموذج أيضا منبرا التي لتحديد العلاجات التي يمكن أن تعزز فعالية التئام الجروح ومنع ترميم الجروح الشاذة 5.

وهناك بالفعل عدد من النماذج المتاحة الجرح إصلاح، سواء في الثقافة والحية، التي وفرت معظم ما هو معروف عن عملية ترميم الجروح اليوم. في نماذج إصابة الحيوانية، مثل القرنية 6-12 و13-17 الجلد، وهناك فرصة لدراسة استجابة الأنسجة لاصابة في سياق جميع الوسطاء الإصلاح التي يمكن أن تشارك في هذه العملية، بما في ذلك المساهمات من الأوعية الدموية والجهاز العصبي. ومع ذلك، هناك قيود على التلاعب من experiالظروف النفسية في الجسم الحي، وأنه ليس من الممكن بعد إجراء دراسات التصوير الاستجابة إصلاح في الجسم الحي، بشكل مستمر مع مرور الوقت. في المقابل، فإن معظم نماذج الثقافة في المختبر الجرح إصلاح، مثل الجرح الصفر، ويمكن التلاعب بها بسهولة، وتابعت مع مرور الوقت ولكنها تفتقر إلى الإطار البيئي دراسة التئام الجروح في الأنسجة في الجسم الحي. في حين أن النماذج خارج الجسم الحي توفر ميزة دراسة عملية إصلاح الضرر بشكل مستمر مع مرور الزمن في سياق المكروية في الخلايا إلى جانب القدرة على تعديل المنظمين الجزيئية للإصلاح في أي نقطة زمنية في هذه العملية، وهناك عدد قليل من النماذج التي تناسب هذه المعلمات.

هنا يتم وصف هذا الإجراء لتوليد تكرار للغاية خارج الحي الظهارية التئام الجروح الثقافات التي تتكاثر ردا على الأنسجة الظهارية لوجرح الفسيولوجية. باستخدام عدسة الفرخ الجنين كمصدر الأنسجة، وبحكم فيفو وزارة التجارةيتم إجراء جراحة الساد ك. العدسة هي الأنسجة مثالية لاستخدامها في هذه الدراسات أنه على مسافة سميكة كبسولة الغشاء القاعدي مكتفية ذاتيا، اوعائي، وليس معصب، وخالية من أي سدى المرتبطة 18،19. في الأمراض التي تصيب البشر، وتتناول جراحة الساد فقدان البصر بسبب عتامة العدسة، وينطوي على إزالة كتلة الخلية الألياف العدسة، التي تضم الجزء الأكبر من العدسة. يتم استعادة التالية الساد رؤية عملية جراحية خلال إدخال عدسة داخل العين الاصطناعية. إجراء جراحة الساد، من خلال إزالة الخلايا الألياف، يحرض استجابة إصابة في الظهارة عدسة المجاورة، التي تستجيب عن طريق إعادة الاندمال بتشكل النسيج الظهاري للمنطقة الخلفية للكبسولة العدسة التي كانت محتلة من قبل خلايا الألياف. في جراحة الساد، كما هو الحال في معظم الردود ترميم الجروح، ويحدث هناك في بعض الأحيان نتيجة تليفي الشاذة للاستجابة التئام الجروح، ويرتبط مع ظهور myofibroblasts، والتي في عدسة يعرف الخلفي Capsuلو عتامة 20-22. لتوليد جراحة الساد نموذج التئام الجروح، وتحاكي إجراء جراحة الساد في العدسات إزالتها من عين الفرخ الجنين لإنتاج إصابة الفسيولوجية. إزالة المجهرية من ألياف العدسة خلايا النتائج في منطقة الجرح دائري متسقة للغاية تحيط بها الخلايا الظهارية عدسة. لا تزال تعلق هذه الفئة من السكان خلية بحزم عدسة الطابق السفلي كبسولة غشاء وأصيبوا من جراء العملية الجراحية. الخلايا الظهارية تهاجر إلى منطقة الجرداء من الغشاء القاعدي الذاتية للشفاء الجرح، بقيادة عدد سكانها خلايا vimentin الغنية الوسيطة المعروفة في عملية الإصلاح كخلايا الزعيم 1. مع هذا النموذج استجابة لظهارة للإصابة يمكن تصور بسهولة وجاءت مع الوقت في سياق المكروية الخلايا. الخلايا يمكن الوصول إليها بسهولة لإدخال تعديلات على التعبير أو تفعيل جزيئات المتوقع أن تلعب دورا في ترميم الجروح. وهناك ميزة قوية من الهو النموذج هو القدرة على عزل ودراسة التغيرات الهجرة محددة في إطار التئام الجروح. القدرة على إعداد عدد كبير من الذين تتراوح أعمارهم بين خارج الجسم الحي التئام الجروح الثقافات مطابقة للدراسات هو ميزة أخرى لهذا النموذج. وبالتالي، فإن هذا النظام النموذجي فرصة فريدة لندف بصرف النظر آليات إصلاح الجرح والعلاجات اختبار تأثيرها على عملية التئام الجروح. ومن المتوقع أن يكون تطبيق واسع نموذج جراحة الساد وهمية خارج الحي، وتوفير الموارد الحرجة لدراسة آليات إصلاح الضرر.

Protocol

بروتوكول التالية يتوافق مع المبادئ التوجيهية المؤسسية رعاية الحيوان واللجنة الاستخدام جامعة توماس جيفرسون ومع بيان ARVO لاستخدام الحيوانات في البحوث الرؤية. 1. إعداد والتحضير للعدسات للثقافة فيفو السابقين الجرح <ol style=";text-ali…

Representative Results

فيفو السابقين نموذج أنشئت لدراسة عملية التئام الجروح في المكروية في الخلايا الأم للتحقيق في الآليات التي تشارك في تنظيم التئام الجروح لظهارة داخل المكروية في الخلايا الأم، تم إنشاء نموذج جراحة الساد ذات الصلة سريريا خار?…

Discussion

Here is described a technique for preparing a culture model of wound repair that involves performing an ex vivo cataract surgery on chick embryo lenses after their removal from the eye. The lens epithelium responds to this clinically relevant wounding with a repair process that closely mimics that which occurs in vivo, and shares features with wound repair in other epithelial tissues2,4. While the protocol is straightforward and simple to follow, performing mock cataract surgery with embryoni…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

This work was supported by National Institutes of Health Grant to A.S.M. (EY021784).

Materials

Sodium Chloride (NaCl) Fisher Scientific S271-3 Use at 140mM in TD Buffer
Potassium Chloride (KCl) Fisher Scientific P217-500 Use at 5mM in TD Buffer
Sodium Phosphate (Na2HPO4) Sigma S0876 Use at .7mM in TD Buffer
D-glucose (Dextrose) Fisher Scientific D16-500 Use at 0.5mM in TD Buffer
Tris Base Fisher Scientific BP152-1 Use at 8.25mM in TD Buffer
Hydrochloric acid Fisher Scientific A144-500 Use to pH TD buffer to 7.4
Media 199 GIBCO 11150-059
L-glutamine Corning/CellGro 25-005-CI Use at 1% in Media199
Penicillin/streptomycin Corning/CellGro 30-002-CI Use at 1% in Media199
100mm petri dishes Fisher Scientific FB0875711Z
Stericup Filter Unit Millipore SCGPU01RE Use to filter sterilize Media
Dumont #5 forceps (need 2) Fine Science Tools 11251-20
35mm Cell Culture Dish Corning 430165
27 Gauge 1mL SlipTip with precision glide needle BD 309623
Fine Scissors Fine Science Tools 14058-11
Standard Forceps Fine Science Tools 91100-12
Other Items Needed: General dissection instruments,  fertile white leghorn chicken eggs, 
check egg incubator (humidified, 37.7°C), laminar flow hood, binocular stereovision dissecting 
microscope

Riferimenti

  1. Walker, J. L., et al. Unique precursors for the mesenchymal cells involved in injury response and fibrosis. Proceedings of the National Academy of Sciences of the United States of America. 107, 13730-13735 (2010).
  2. Friedl, P., Gilmour, D. Collective cell migration in morphogenesis, regeneration and cancer. Nature reviews. Molecular cell biology. 10, 445-457 (2009).
  3. Riahi, R., Yang, Y., Zhang, D. D., Wong, P. K. Advances in wound-healing assays for probing collective cell migration. Journal of laboratory automation. 17, 59-65 (2012).
  4. Khalil, A. A., Friedl, P. Determinants of leader cells in collective cell migration. Integrative biology : quantitative biosciences from nano to macro. 2, 568-574 (2010).
  5. Walker, J. L., Wolff, I. M., Zhang, L., Menko, A. S. Activation of SRC kinases signals induction of posterior capsule opacification. Investigative ophthalmology & visual science. 48, 2214-2223 (2007).
  6. Sta Iglesia, D. D., Stepp, M. A. Disruption of the basement membrane after corneal debridement. Investigative ophthalmology & visual science. 41, 1045-1053 (2000).
  7. Pal-Ghosh, S., Pajoohesh-Ganji, A., Brown, M., Stepp, M. A. A mouse model for the study of recurrent corneal epithelial erosions: alpha9beta1 integrin implicated in progression of the disease. Investigative ophthalmology & visual science. 45, 1775-1788 (2004).
  8. Pal-Ghosh, S., Pajoohesh-Ganji, A., Tadvalkar, G., Stepp, M. A. Removal of the basement membrane enhances corneal wound healing. Experimental eye research. 93, 927-936 (2011).
  9. Stepp, M. A., et al. Wounding the cornea to learn how it heals. Experimental eye research. 121, 178-193 (2014).
  10. Kuwabara, T., Perkins, D. G., Cogan, D. G. Sliding of the epithelium in experimental corneal wounds. Investigative ophthalmology. 15, 4-14 (1976).
  11. Sherrard, E. S. The corneal endothelium in vivo: its response to mild trauma. Experimental eye research. 22, 347-357 (1976).
  12. Stramer, B. M., Zieske, J. D., Jung, J. C., Austin, J. S., Fini, M. E. Molecular mechanisms controlling the fibrotic repair phenotype in cornea: implications for surgical outcomes. Investigative ophthalmology & visual science. 44, 4237-4246 (2003).
  13. Escamez, M. J., et al. An in vivo model of wound healing in genetically modified skin-humanized mice. The Journal of investigative dermatology. 123, 1182-1191 (2004).
  14. Werner, S., Breeden, M., Hubner, G., Greenhalgh, D. G., Longaker, M. T. Induction of keratinocyte growth factor expression is reduced and delayed during wound healing in the genetically diabetic mouse. The Journal of investigative dermatology. 103, 469-473 (1994).
  15. Tarin, D., Croft, C. B. Ultrastructural studies of wound healing in mouse skin. II. Dermo-epidermal interrelationships. Journal of anatomy. 106, 79-91 (1970).
  16. Croft, C. B., Tarin, D. Ultrastructural studies of wound healing in mouse skin I. Epithelial behaviour. Journal of anatomy. 106, 63-77 (1970).
  17. Winstanley, E. W. The epithelial reaction in the healing of excised cutaneous wounds in the dog. Journal of comparative pathology. 85, 61-75 (1975).
  18. Wormstone, I. M., Wride, M. A. The ocular lens: a classic model for development, physiology and disease. Philosophical transactions of the Royal Society of London. Series B, Biological. 366, 1190-1192 (2011).
  19. Danysh, B. P., Duncan, M. K. The lens capsule. Experimental eye research. 88, 151-164 (2009).
  20. Awasthi, N., Guo, S., Wagner, B. J. Posterior capsular opacification: a problem reduced but not yet eradicated. Archives of ophthalmology. 127, 555-562 (2009).
  21. Walker, T. D. Pharmacological attempts to reduce posterior capsule opacification after cataract surgery–a review. Clinical & experimental ophthalmology. 36, 883-890 (2008).
  22. Schmidbauer, J. M., et al. Posterior capsule opacification. International ophthalmology clinics. 41, 109-131 (2001).
  23. Menko, A. S., et al. A central role for vimentin in regulating repair function during healing of the lens epithelium. Molecular biology of the cell. 25, 776-790 (2014).
  24. Chauss, D., et al. Differentiation state-specific mitochondrial dynamic regulatory networks are revealed by global transcriptional analysis of the developing chicken lens. G3 (Bethesda). 4, 1515-1527 (2014).
  25. Leonard, M., Zhang, L., Bleaken, B. M., Menko, A. S. Distinct roles for N-Cadherin linked c-Src and fyn kinases in lens development. Developmental dynamics : an official publication of the American Association of Anatomists. 242, 469-484 (2013).
  26. Sieg, D. J., et al. FAK integrates growth-factor and integrin signals to promote cell migration. Nature cell biology. 2, 249-256 (2000).
  27. Sieg, D. J., Hauck, C. R., Schlaepfer, D. D. Required role of focal adhesion kinase (FAK) for integrin-stimulated cell migration. Journal of cell science. 112 (Pt 16), 2677-2691 (1999).
  28. Hauck, C. R., Hsia, D. A., Schlaepfer, D. D. The focal adhesion kinase–a regulator of cell migration and invasion). IUBMB life. 53, 115-119 (2002).
  29. Zhao, X., Guan, J. L. Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. Advanced drug delivery reviews. 63, 610-615 (2011).
  30. Menko, A. S., Bleaken, B. M., Walker, J. L. Regional-specific alterations in cell-cell junctions, cytoskeletal networks and myosin-mediated mechanical cues coordinate collectivity of movement of epithelial cells in response to injury. Experimental cell research. 322, 133-148 (2014).
  31. Martin, P. Wound healing–aiming for perfect skin regeneration. Science. 276, 75-81 (1997).
  32. Ferguson, M. W., O’Kane, S. Scar-free healing: from embryonic mechanisms to adult therapeutic intervention. Philosophical transactions of the Royal Society of London. Series B, Biological. 359, 839-850 (2004).
  33. Redd, M. J., Cooper, L., Wood, W., Stramer, B., Martin, P. Wound healing and inflammation: embryos reveal the way to perfect repair. Philosophical transactions of the Royal Society of London. Series B, Biological. 359, 777-784 (2004).
  34. Nodder, S., Martin, P. Wound healing in embryos: a review. Anatomy and embryology. 195, 215-228 (1997).
  35. Gurtner, G. C., Werner, S., Barrandon, Y., Longaker, M. T. Wound repair and regeneration. Nature. 453, 314-321 (2008).

Play Video

Citazione di questo articolo
Walker, J. L., Bleaken, B. M., Wolff, I. M., Menko, A. S. Establishment of a Clinically Relevant Ex Vivo Mock Cataract Surgery Model for Investigating Epithelial Wound Repair in a Native Microenvironment. J. Vis. Exp. (100), e52886, doi:10.3791/52886 (2015).

View Video