Summary

熱蒸着および原子層堆積法によって記録し、効率のSnS太陽電池を作ります

Published: May 22, 2015
doi:

Summary

Tin sulfide (SnS) is a candidate material for Earth-abundant, non-toxic solar cells. Here, we demonstrate the fabrication procedure of the SnS solar cells employing atomic layer deposition, which yields 4.36% certified power conversion efficiency, and thermal evaporation which yields 3.88%.

Abstract

錫スルフィド(SNS)は、地球の豊富な、非毒性の太陽電池の候補吸収材料です。 SNSが合同熱蒸着によって容易位相制御と急速な成長を提供し、それが強く、可視光を吸収します。しかし、長時間のSnS太陽電池の記録パワー変換効率は2%未満のままでした。最近では、熱蒸着を用いた原子層堆積によって堆積のSnS、および3.88パーセントを使用して4.36パーセントの新しい認定記録効率を実証しました。ここでは、これらのレコードの太陽電池の製造手順を説明すると、製造プロセスの統計的分布が報告されています。単一の基板上で測定効率の標準偏差は、典型的には0.5%以上です。基質の選択および洗浄を含むすべてのステップは、Moが記載されているリアコンタクト(カソード)のSNS堆積、アニーリング、表面パッシベーションはZn(O、S)バッファ層の選択および堆積、透明導電体(陽極)の堆積、及び金属スパッタリング。各基板上に、我々は、アクティブ領域とそれぞれ0.25センチメートル2 11個々のデバイスを、製造します。また、模擬太陽光の下での電流 – 電圧曲線の高スループット測定、及び可変軽バイアスと外部量子効率測定のためのシステムが記載されています。このシステムでは、我々は、自動化された方法で、最小限の時間ですべての11のデバイスの完全なデータセットを測定することができます。これらの結果は、大規模なサンプルセットを勉強ではなく、最高のパフォーマンスデバイスに狭くフォーカスの値を示しています。大規模なデータセットは、私たちは私たちの機器に影響を与える個々の損失機構を区別し、改善するのに役立ちます。

Introduction

薄膜太陽光発電(PV)は、関心と重要な研究活動を魅了し続けます。しかし、太陽光発電市場の経済は急速にシフトし、商業的に成功した薄膜PVを開発しているが、より困難な見通しとなっています。当然のウエハベースの技術を介して製造コストの優位性はもはや行われないことができ、効率化とコストの両方の改善が対等な立場で求められている必要があります。1,2このような現実を踏まえて、我々はのための吸収材料としてのSnSを開発することを選択しました薄膜PV。 SNSが低い製造コストにつながる可能性が本質的な実用上の利点があります。高い効率を示すことができる場合は、商用薄膜PVでのCdTeのドロップイン代替品として考えられます。ここでは、最近報告されたSnS記録太陽電池の製造手順が示されています。我々は、このような基板の選択、堆積条件、デバイスレイアウト、及び測定プロトコルなどの実用的な側面に焦点を当てます。

SNは、非毒性地球豊富で安価な要素(錫と硫黄)で構成されています。 SNSは1.1 eVでの間接的なバンドギャップを有する不活性、不溶性の半導体固体(鉱物名Herzenbergite)で、1.4 eVの上記のエネルギーを有する光子のための強力な光吸収(α> 10 4 cm -1で)、およびキャリア濃度の内因性のp型の導電性範囲の10月15日から10月17日まで cm -33 –重要な7は 、SNSが合同蒸発し600℃までの相安定である8,9これは、たSnSは熱蒸発(TE)と高いによって堆積することができることを意味します。のCdTe太陽電池の製造に使用されているよう-speedいとこ、密閉空間昇華(CSS)。またのSNS位相制御は、特にたCu(In、Gaの)(S、SE)2(CIGS)及びCu 2 ZnSnS 4(CZTS)を含む、ほとんどの薄膜PV材料よりもはるかに単純であることを意味します。したがって、細胞EFFICIENCYはPVのSnSの商業化への一次障壁として立って、やSNSを一旦高い効率を実験室規模で実証されたCdTeのドロップイン置換と考えることができます。しかし、この効率の障壁は誇張することはできません。我々は、記録効率が商業開発を刺激するために、〜4%〜15%から、4倍に増加しなければならないと推定しています。ドロップインのCdTeの代替としてSNを開発することは、高品質のSNの成長CSSによる薄膜、およびSNSは直接成長させることができるその上のn型の相手材料の開発が必要になります。

以下は、2つの異なる堆積技術、原子層堆積(ALD)とTEを使用して、レコードのSnS太陽電池を製造するための段階的な手順について説明します。 ALDは、低成長法であるだけに、最新の高効率のデバイスをもたらしました。 TEは、より速く、工業的にスケーラブルであるが、効率がALDに遅れます。別のSNS堆積方法に加えて、TEとALD太陽電池は、アニール、表面パッシベーション、および金属化ステップで若干異なります。デバイスの製造工程を図1に列挙されています。

手順を説明した後、認定記録装置および関連するサンプルについての試験結果を示します。記録結果は、以前に報告されています。ここでの焦点は、典型的な処理の実行の結果の分布にあります。

Protocol

1。基板の選択および切断購入厚い熱酸化物とSiウエハを研磨します。ここで報告されたデバイスについては、300 nm以下厚い熱酸化物で厚さ500μmのウェーハを使用しています。基板の選択基準は、ディスカッションのセクションで説明されています。 代表的なポジ型フォトレジスト(SPR 700またはPMMA A. 495)およびソフトベーク(100℃で30秒)をスピンコートウェーハの研磨面を?…

Representative Results

上述したように図において6-8の結果は2つの代表的な「ベースライン」TE-成長したサンプルについて示されています。イルミネーションJ -これらの二つのサンプルに対するVデータを図6にプロットされた第1のサンプル(「SnS140203F」)は、以前に報告された3.88パーセントの認定された効率を有するデバイスをもたらした9代表JV分布<…

Discussion

基板選択クリーニング

酸化されたSiウエハが基板として使用されています。基材は、得られる太陽電池の機械的支持体であり、その電気的特性は重要ではありません。市販Siウエハは、典型的には、市販のガラスウェーハよりもきれいであり、これは、基板の洗浄に時間を節約するため、Siウエハをガラスに好適です。 Siはまた、成長およびアニーリングの?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

著者らは、認定JV測定ため国立再生可能エネルギー研究所(NREL)からポールCiszekとキースエメリーに感謝したいと思い、ライリーブラント(MIT)光電子分光測定のため、と仮説試験部のためのインスピレーションのためのジェフ·コッター(ASU)。この作品は、付与02.20.MC11下ボッシュエネルギー研究ネットワークを介して契約DE-EE0005329下、およびロバート·ボッシュLLCによってSunShotイニシアティブを通じて、米国エネルギー省によってサポートされています。 V.シュタインマン、R. Jaramilloの、およびK.ハートマンは、アレクサンダー·フォン·フンボルト財団、それぞれDOE EEREポスドク研究賞、およびIntel博士号フェローシップ、のサポートを認めます。この作品は賞ECS-0335765の下で国立科学財団によってサポートされているハーバード大学のナノスケールシステムセンターを利用しました。

Materials

Quartz wafer carrier AM Quartz, Gainesville, TX bespoke design
Sputtering system PVD Products High vacuum sputtering system with load lock
4% H2S in N2 Airgas Inc. X02NI96C33A5626
99.5% H2S Matheson Trigas G1540250
SnS powder Sigma Aldrich 741000-5G
Effusion cell Veeco 35-LT Low temperature, single filament effusion cell
diethylzinc (Zn(C2H5)2) Strem Chemicals 93-3030
Laser cutter Electrox Scorpian G2 Used for ITO shadow masks
ITO sputtering target (In2O3/SnO2 90/10 wt.%, 99.99% pure) Kurt J. Lesker EJTITOX402A4
Metallization shadow masks MicroConnex bespoke design
Electron Beam Evaporator Denton High vacuum metals evaporator with load-lock
AM1.5 solar simulator Newport Oriel 91194 1300 W Xe-lamp using an AM1.5G filter
Spectrophotometer Perkin Elmer Lambda 950 UV-Vis-NIR 150mm Spectralon-coated integrating sphere
Calibrated Si solar cell PV Measurements BK-7 window glass
Double probe tips Accuprobe K1C8C1F
Souce-meter Keithley 2400
Quantum efficiency measurement system PV Measurements QEX7
Calibrated Si photodiode PV Measurements
High-throughput solar cell test station PV Measurements bespoke design
Inert pump oil DuPont Krytox PFPE oil, grade 1514; vendor: Eastern Scientific
H2S resistant elastomer o-rings DuPont Kalrez compound 7075; vendor: Marco Rubber
H2S resistant elastomer o-rings Marco Rubber Markez compound Z1028
H2S resistant elastomer o-rings Seals Eastern, Inc. Aflas vendor: Marco Rubber

Riferimenti

  1. Woodhouse, M., Goodrich, A., et al. Perspectives on the pathways for cadmium telluride photovoltaic module manufacturers to address expected increases in the price for tellurium. Solar Energy Materials and Solar Cells. 115, 199-212 (2013).
  2. Ramakrishna Reddy, K. T., Koteswara Reddy, N., Miles, R. W. Photovoltaic properties of SnS based solar cells. Solar Energy Materials and Solar Cells. 90 (18-19), 3041-3046 (2006).
  3. Sinsermsuksakul, P., Heo, J., Noh, W., Hock, A. S., Gordon, R. G. Atomic Layer Deposition of Tin Monosulfide Thin Films. Advanced Energy Materials. 1 (6), 1116-1125 (2011).
  4. Noguchi, H., Setiyadi, A., Tanamura, H., Nagatomo, T., Omoto, O. Characterization of vacuum-evaporated tin sulfide film for solar cell materials. Solar Energy Materials and Solar Cells. 35, 325-331 (1994).
  5. Hartman, K., Johnson, J. L., et al. SnS thin-films by RF sputtering at room temperature. Thin Solid Films. 519 (21), 7421-7424 (2011).
  6. Tanusevski, A. Optical and photoelectric properties of SnS thin films prepared by chemical bath deposition. Semiconductor Science and Technology. 18 (6), 501 (2003).
  7. Sharma, R. C., Chang, Y. A. The S−Sn (Sulfur-Tin) system. Bulletin of Alloy Phase Diagrams. 7 (3), 269-273 (1986).
  8. Steinmann, V., Jaramillo, R., et al. 3.88% Efficient Tin Sulfide Solar Cells using Congruent Thermal Evaporation. Advanced Materials. 26 (44), 7488-7492 (2014).
  9. Sinsermsuksakul, P., Sun, L., et al. Overcoming Efficiency Limitations of SnS-Based Solar Cells. Advanced Energy Materials. 4 (15), 1400496 (2014).
  10. Hejin Park, H., Heasley, R., Gordon, R. G. Atomic layer deposition of Zn(O,S) thin films with tunable electrical properties by oxygen annealing. Applied Physics Letters. 102 (13), 132110 (2013).
  11. Scofield, J. H., Duda, A., Albin, D., Ballard, B. L., Predecki, P. K. Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells. Thin Solid Films. 260 (1), 26-31 (1995).
  12. Malone, B. D., Gali, A., Kaxiras, E. First principles study of point defects in SnS. Physical Chemistry Chemical Physics. 16, 26176-26183 (2014).
  13. Vaux, D. L. Research methods: Know when your numbers are significant. Nature. 492 (7428), 180-181 (2012).

Play Video

Citazione di questo articolo
Jaramillo, R., Steinmann, V., Yang, C., Hartman, K., Chakraborty, R., Poindexter, J. R., Castillo, M. L., Gordon, R., Buonassisi, T. Making Record-efficiency SnS Solar Cells by Thermal Evaporation and Atomic Layer Deposition. J. Vis. Exp. (99), e52705, doi:10.3791/52705 (2015).

View Video