Indoxyl glycosides are well-established and widely used tools for enzyme screening and enzyme activity monitoring. Especially for glucose type structures previous syntheses proved to be challenging and low yielding. Our novel approach employs indoxylic acid esters as precious intermediates to yield a considerable number of indoxyl glycosides in good yields.
吲哚酚甙被证明是监测糖苷酶活动的宝贵和灵活的工具。 Indoxyls通过酶水解释放,并迅速被氧化,例如通过大气中的氧,靛蓝类染料。这个反应能够快速和容易的掩护体内不分离或酶的纯化,以及在琼脂平板上或在溶液中快速检测( 例如,蓝白斑筛选,微井)和用于生物化学,组织化学,细菌学和分子生物学。不幸的是这样的基片的合成被证明是困难的,由于各种副反应和吲哚酚羟基官能的反应性低。特别是对于葡萄糖型结构低收益率的变化。我们的新方法使用indoxylic酸酯作为关键中间体。 Indoxylic酸酯具有不同的图案取代了可伸缩的途径准备。这些受体和乙酰化相转移糖基化糖基卤化物可以高收率常见的条件下进行。酯裂解和随后的温和银介导的糖基化得到高收率的过酰化吲哚酚苷。最后的脱保护是根据普伦执行。
For a long time the production of indigo was an economically very important process. Before large scale chemical syntheses gave cheap access to indigo, precursors were obtained from natural sources since pre-Christian times. The cultivation of indigo providing plants (natural indigo) in Europe became unrewarding in the 17th century, as the amount of indigo precursors of the Indian indigo plant (0.2-0.8 %) is about 30 times higher. At the end of the 19th century chemical synthesis of indigo suppressed the conventional cultivation1,2.
Indigo precursors occurring naturally in plants include Indican (1), Insatan A (2) and Isatan B (3) (Figure 1). All of them consist of an indoxyl motive linked to a glycosyl residue. Cleavage of the glycosidic linkage, for example by enzymatic hydrolysis, leads to release of indoxyl (4). Indoxyl itself is almost colorless, but can be rapidly oxidized to form an indigo dye (5). This sensitive reaction has been adapted in biochemistry, histochemistry, bacteriology and molecular biology for monitoring enzyme activities. Activity screening in vivo without isolation or purification of enzymes, as well as rapid tests on agar plates or in solution (e.g., blue-white screening, micro-wells) is possible. Depending of the residue (e.g., esters, glycosides, sulfates) linked to the indoxyl moiety, suitable substrates for different enzyme classes (e.g., esterases, glycosidases, sulfatases) have been developed3. In the following focus will be on formation and application of indoxyl glycosides.
Figure 1: Natural indigo precursors and formation of indigo dye by hydrolysis. Please click here to view a larger version of this figure.
The substitution pattern of the indoxyl moiety determines the color and physical properties of the resulting indigo dye. The most common substitution patterns are 5-bromo-4-chloro (abbreviated by X; greenish-blue), 5-bromo (blue) and 5-bromo-6-chloro (magenta), since these form the smallest dye particles, do not form granules and have the least diffusion from sites of hydrolysis. The last property is especially important for in vivo experiments3.
The first report of an indigogenic method for detection of esterase activity was published in 1951 by Barrnett and Seligman, who employed indoxyl acetate and butyrate4. About one decade later the indigogenic principle was adapted for localization of mammalian glucosidase5. Up to now several indoxyl glycosides have been developed even though their synthesis proved to be difficult. Most syntheses are based on employing an N-acetylated indoxyl as acceptor and the respective glycosyl halide donor6-14. Glycosylation is performed in acetone with sodium hydroxide. Under these conditions a number of side reactions occur, decreasing the yield significantly. Especially for glucose type structures very low glycosylation yields were reported (e.g., 15% for (N-acetyl-5-bromo-4-chloro-indol-3-yl)-2,3,4,6-tetra-O-acetyl-β-ᴅ-glucopyranoside6 and 26% for (N-acetyl-5-bromo-4-chloro-indol-3-yl)-2,3,2',3',4'-penta-O-acetyl-β-ᴅ-xylobioside14 in a more recent example). Through a novel approach, employing indoxylic acid esters, a considerable number of indoxyl glycosides were prepared in good yields (e.g., (N-acetyl-5-bromo-4-chloro-indol-3-yl)-2,3,4,6-tetra-O-acetyl-β-ᴅ-glucopyranoside 57% yield).
The following protocol describes the straightforward synthesis of indoxylic acid allyl ester (5-bromo-4-chloro) and based thereon the synthesis of an indoxyl glycoside (X-Gal). A simple model experiment shows the enzyme reactivity of β-galactosidase employing X-Gal.
Owing to poor yields and limitations, especially for glucose type structures and more complex saccharides, a novel synthetic approach towards indoxyl glycosides was developed. Indoxylic acid esters proved to be precious key intermediates and were obtained in a modular, scalable pathway. All steps are high yielding and due to cheap starting materials and easy workup multi-gram syntheses are possible. The advantage of the allyl ester approach is the blocking of the reactive 2-position. Thus yield decreasing side reactions …
The authors have nothing to disclose.
Support of this work by Glycom A/S, Copenhagen, Denmark, is gratefully acknowledged.
Name of Material/ Equipment | Company | Catalog Number | Comments/Description |
Acetic anhydride | Grüssing | 10298 | Corrosive, flammable |
Acetonitrile | Sigma-Aldrich | 608-001-00-3 | Harmful, flammable |
Allyl alcohol | Aldrich | 453021 | Harmful, dangerous for the environment |
Amberlite IR-120 H+ | Fluka | 06428 | Irritant |
Bromoacetic acid | Merck | 802260 | Corrosive, toxic, dangerous for the environment |
4-Bromo-3-chloro-2-methylaniline | ABCR | AB 171687 | Irritant |
Dichloromethane | ACROS | 326850010 | Harmful |
Diethyl ether | Grüssing | 10274 | Harmful, extremly flammable |
Dimethylformamide | ACROS | 348430010 | Harmful, flammable |
Dimethylsulfoxide | Sigma-Aldrich | 41648 | |
Ethyl acetate | Sigma-Aldrich | 607-022-00-5 | Irritant, flammable |
Ethylenediaminetetraacetic acid | AppliChem | A1103.0500 | Irritant |
ß1,3-Galactosidase, Recombinant, E. coli | Calbiochem | 345795 | |
Hydrochloric acid | VWR | 20252.290 | Corrosive |
Magnesium sulfate hydrate | Merck | 105885 | |
Methanol | ACROS | 326950010 | Toxic, flammable |
Morpholine | Janssen Chimica | 15.868.57 | Corrosive, flammable |
Peroleum ether | Azelis | 111053 | Flammable, irritant, dangerous for the environment |
Potassium carbonate | Grüssing | 12005 | Corrosive |
Potassium permanganate | Grüssing | 12056 | Harmful, oxidising |
Potassium tert-butoxide | Merck | 804918 | Corrosive, flammable |
Pyridine | Sigma-Aldrich | 613-002-00-7 | Harmful, flammable |
Silver acetate | Fluka | 85140 | Irritant, dangerous for the environment |
Sodium bicarbonate | Grüssing | 12144 | Corrosive |
Sodium hydride | Merck | 814552 | Corrosive, flammable |
Sodium hydroxide | Riedel-de Häen | S181200 | Corrosive |
Sodium methanolate | Merck | 806538 | Corrosive, flammable |
Sodium sulfate | Grüssing | 12175 | |
Tetrabutylammonium hydrogensulfate | Lancaster | 5438 | Harmful |
Tetrahydrofurane | Sigma-Aldrich | 87371 | Harmful, flammable |
Tetrakis(triphenylphosphine)palladium(0) | Sigma-Aldrich | 216666 | |
Triphosgene | Fluka | 15217 | Toxic |
Tris(hydroxymethyl)aminomethane hydrochloride | Sigma | T-3253 | Irritant |