Summary

感觉和运动脑区与运动同步和肌电图监测功能近红外光谱在运动任务

Published: December 05, 2014
doi:

Summary

Monitoring brain activity during upright motor tasks is of great value when investigating the neural source of movement disorders. Here, we demonstrate a protocol that combines functional near infrared spectroscopy with continuous monitoring of muscle and kinematic activity during 4 types of motor tasks.

Abstract

有几个优点,功能近红外光谱(fNIRS)呈现在人类运动神经控制的研究。它比较灵活,对于参与者的定位,并允许在任务的一些头部运动。此外,它是廉价的,重量轻,便携,极少禁忌其使用。这提供在个人谁通常显影,以及那些与运动失调,如脑性麻痹期间马达任务学习功能的大脑活动的独特机会。学习运动障碍时额外的考虑,但是,是进行实际运动的质量和额外的,意想不到的动作的可能性。因此,需要对fNIRS结果适当解释并发监测大脑中的两个血流变化以及身体的在测试期间的实际动作。这里,我们显示一个协议fNIRS与组合肌肉在运动任务运动监控。我们探讨步态,单边多关节移动(循环),和两个单侧单关节运动(隔绝踝关节背屈,并分离手挤压)。呈现的技术可以在学习典型和非典型的电机控制是有用的,并且可以被修改以调查范围广泛的任务和科学问题的。

Introduction

在功能性任务的神经成像变得更轻便和成本效益的使用非侵入性官能近红外光谱(fNIRS)通过测定血流动力学在皮质,以确定大脑活动的区域。 fNIRS的可移植性是在直立和功能任务,例如步态1,这是不可能与其他技术的研究中特别有用,如功能性磁共振成像(fMRI)。这种能力是在神经学和神经科学领域的关键,并可能提供新的见解基本运动障碍的儿童和成人脑瘫(CP),并影响到电机控制等神经系统疾病的机制。理解的机制提高了设计有效的干预对目标损伤和活动限制的源的能力。

电机的任务很多fNIRS研究迄今已与成人的健康人群,其中一部分icipants被指示执行某一任务,监控任务性能被限制在目视检查。这可能是足以让那些典型的运动和参与的高水平,但研究的参与者与运动障碍或谁有困难出席了任务延长的时期,包括正常发育儿童的时候是不能接受的。为了告知脑激活在这些情况下的分析,需要同时监视电动机图案的,实际上是完成。

fNIRS系统和用法的全面审查已经呈现在文献2-5指导使用和有助于说明fNIRS的精度和这些系统的灵敏度,但在收集,处理的技术问题,并解释数据仍然存在。颜色和头发厚度影响光信号的质量,以深色浓密的头发最有可能阻止或扭曲光学transmi裂变3,6。研究位于头部,其中毛囊密度是最大的冠区域中的感觉运动区时,一些研究报告非应答者6,7,这是特别相关的。已确立国际二十○分之一十系统可用于光极的放置,但特别是在那些与非典型脑解剖,共同登记光极的位置,以参加者的解剖的MRI的情况是,如果不是必要的,以正确地解释非常有用结果。

使用fNIRS,以评估在儿童期发病的脑损伤的脑激活是相当新的,但在单边脑瘫6,8,9领域获得牵引力。在考虑到前述的挑战,该协议结合fNIRS,动作捕捉,和肌电(EMG)监测期间多项任务,包括简单的单关节任务,以及更复杂的全身运动。视觉和听觉指导我们ED改善跨越多个年龄段的参与者关注和工作表现。该协议的目的是找出那些具有单侧和双侧儿童期发病的脑损伤相比,谁通常在开发大脑活动模式的差异。我们探索一个完整的身体运动(步态),一个双侧下肢多关节移动(循环),和两个单侧单关节运动(隔绝踝关节背屈,并分离手挤压)来说明各种方法的应用程序。相同或非常类似的协议可以被用来研究其它感觉或运动障碍或其他感兴趣的任务。

近红外光的连续波被发射,并在690纳米和830纳米以上使用fNIRS系统以50赫兹的速率在感觉皮质检测,使用定制设计的源 – 检测器的配置。肌电图数据收集无线在1000赫兹的频率。反光标记3-D的位置是由光学运动捕捉系统100赫兹的速率收集的。两个不同的计算机处理的数据采集,一个用于fNIRS,另一个用于动作捕捉和肌电图。使用从对应于鼠标按钮按下启动教学动画为每个任务三分之一的计算机触发脉冲数据同步。对于除步态的所有任务,教学动画设计规范参与者的性能使用任务(1赫兹),通过卡通动物跳跃或踢,以及听觉提示所代表的步伐视觉引导。

Protocol

注:此方案经美国国立卫生研究院的机构审查委员会(ClinicalTrials.gov标识符:NCT01829724)。所有参加者有机会提问,之前,他们的参与提供了知情同意书。在考虑变化所引起的最近使用血管扩张剂和血管收缩剂的血液动力学反应,参与者被要求从酒精和咖啡因以避免在实验3。这些动画影片被定义在我们的实验室做出之前24小时,但可以用其他声音或特定的替代研究问题的图像。 <p class="…

Representative Results

这个协议协调并发采集3方式捕捉脑血流,肌肉电活动和关节的运动学运动的同时参与者执行电动机的任务( 图1)。 图1.探针位置。该图的左侧部分示出的感觉区的近似位置(蓝色,布洛德曼区域1,2,3),主马达区域(显示为绿色,布洛德曼区域4),和运动前区(?…

Discussion

同时采集大脑活动的从皮层的目标区域,以及有关如何一个人正在呈现巨大的潜力,以便改进我们的运动神经控制的理解,无论是在一个典型的显影的人口,以及那些具有运动障碍的量化数据。也有在年龄和运动的任务,可以完成,作为参与者不限于仰卧位置,因为它们将是一个功能性磁共振成像方面具有广阔的应用。的具体设备的物品不限于那些在材料清单提示 – 有几个运动捕获和运动的量化?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

This project was funded by the Intramural Research Program at the National Institutes of Health Clinical Center. We acknowledge the helpful discussions with Dr. Thomas Bulea, PhD and Laurie Ohlrich, PT in refining the procedures presented in this protocol. Muyinat W. Osoba and Andrew Gravunder, MS assisted with the animations.

Materials

Name of Reagent/ Equipment Company Catalog Number Comments/Description
CW6 TechEn http://nirsoptix.com/ fNIRS machine with variable number of sources and detectors, depending on the number of modules included
MX system with ten T40-series cameras Vicon Motion Systems Ltd., Oxford, UK http://www.vicon.com/System/TSeries Motion capture cameras
reflective 4 mm markers Vicon Motion Systems Ltd., Oxford, UK n/a Markers used by the motion capture cameras to locate fNIRS optodes, Ar, Al, Nz, and hand coordinates.
reflective 9.5 mm markers Vicon Motion Systems Ltd., Oxford, UK n/a Markers used by the motion capture cameras to locate arm and leg coordinates. Clusters are used for the limb segments, and markers with offsets are uses for PSIS and Iz to improve reliability in data capture.
Trigno Wireless EMG system Delsys, Inc. Natick, MA http://www.delsys.com/products/wireless-emg/ Electromyography
Bertec split-belt instrumented treadmill Bertec Corporation, Columbus, OH http://bertec.com/products/instrumented-treadmills.html Treadmill
ZeroG body-weight support system Aretech, LLC, Ashburn, VA http://www.aretechllc.com/overview.html Track and passive trolley used to support cables, harness can be used for patient safety during gait trials
3DS Max 2013 Autodesk, Inc., San Francisco, CA  http://www.autodesk.com/ 3-D animation software used to animate animals for instructional videos
Windows Movie Maker Microsoft Corporation, Redmond, WA http://windows.microsoft.com/en-us/windows-live/movie-maker software used to combine animation footage with music
Audacity open source http://audacity.sourceforge.net/ Software used to alter musical beat to appropriate cadence

Riferimenti

  1. Suzuki, M., et al. Prefrontal and premotor cortices are involved in adapting walking and running speed on the treadmill: an optical imaging study. Neuroimage. 23 (3), 1020-1026 (2004).
  2. Leff, D. R., et al. Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies. Neuroimage. 54 (4), 2922-2936 (2011).
  3. Orihuela-Espina, F., Leff, D. R., James, D. R., Darzi, A. W., Yang, G. Z. Quality control and assurance in functional near infrared spectroscopy (fNIRS) experimentation. Phys Med Biol. 55 (13), 3701-3724 (2010).
  4. Pellicer, A., Bravo Mdel, C. Near-infrared spectroscopy: a methodology-focused review. Semin Fetal Neonatal Med. 16 (1), 42-49 (2011).
  5. Wolf, M., Ferrari, M., Quaresima, V. Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications. J Biomed Opt. 12 (6), 062104 (2007).
  6. Tian, F., et al. Quantification of functional near infrared spectroscopy to assess cortical reorganization in children with cerebral palsy. Opt Express. 18 (25), 25973-25986 (2010).
  7. Koenraadt, K. L., Duysens, J., Smeenk, M., Keijsers, N. L. Multi-channel NIRS of the primary motor cortex to discriminate hand from foot activity. J Neural Eng. 9 (4), 046010 (2012).
  8. Khan, B., et al. Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy. J Biomed Opt. 15 (3), 036008 (2010).
  9. Tian, F., Alexandrakis, G., Liu, H. Optimization of probe geometry for diffuse optical brain imaging based on measurement density and distribution. Appl Opt. 48 (13), 2496-2504 (2009).
  10. Oldfield, R. C. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 9 (1), 97-113 (1971).
  11. Delagi, E. F., Perotto, A. Anatomic guide for the electromyographer–the limbs. , (1980).
  12. Hermens, H. J., Freriks, B., Disselhorst-Klug, C., Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 10 (5), 361-374 (2000).
  13. Garvey, M. A., Kaczynski, K. J., Becker, D. A., Bartko, J. J. Subjective reactions of children to single-pulse transcranial magnetic stimulation. J Child Neurol. 16 (12), 891-894 (2001).
  14. Huppert, T. J., Diamond, S. G., Franceschini, M. A., Boas, D. A. HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain. Appl Opt. 48 (10), 280-298 (2009).
  15. Boas, D. A. . HOMER2. , (2012).
  16. Jasdzewski, G., et al. Differences in the hemodynamic response to event-related motor and visual paradigms as measured by near-infrared spectroscopy. Neuroimage. 20 (1), 479-488 (2003).
  17. Plichta, M. M., et al. Event-related functional near-infrared spectroscopy (fNIRS): are the measurements reliable. Neuroimage. 31 (1), 116-124 (2006).
  18. Hervey, N., et al. Photonic Therapeutics and Diagnostics IX. SPIE. , (2013).
  19. Sanger, T. D., Delgado, M. R., Gaebler-Spira, D., Hallett, M., Mink, J. W. Classification and definition of disorders causing hypertonia in childhood. Pediatrics. 111 (1), 89-97 (2003).
  20. Eyre, J. A., et al. Is hemiplegic cerebral palsy equivalent to amblyopia of the corticospinal system. Ann Neurol. 62 (5), 493-503 (2007).
  21. Maegaki, Y., et al. Central motor reorganization in cerebral palsy patients with bilateral cerebral lesions. Pediatr Res. 45 (4 pt 1), 559-567 (1999).
  22. Hoon, A. H., et al. Sensory and motor deficits in children with cerebral palsy born preterm correlate with diffusion tensor imaging abnormalities in thalamocortical pathways. Dev Med Child Neurol. 51 (9), 697-704 (2009).
  23. Yoshida, S., et al. Quantitative diffusion tensor tractography of the motor and sensory tract in children with cerebral palsy. Dev Med Child Neurol. 52 (10), 935-940 (2010).
  24. Lotze, M., Sauseng, P., Staudt, M. Functional relevance of ipsilateral motor activation in congenital hemiparesis as tested by fMRI-navigated TMS. Exp Neurol. 217 (2), 440-443 (2009).
  25. Phillips, J. P., et al. Ankle dorsiflexion fMRI in children with cerebral palsy undergoing intensive body-weight-supported treadmill training: a pilot study. Dev Med Child Neurol. 49 (1), 39-44 (2007).
  26. Wilke, M., et al. Somatosensory system in two types of motor reorganization in congenital hemiparesis: topography and function. Hum Brain Mapp. 30 (3), 776-788 (2009).

Play Video

Citazione di questo articolo
Sukal-Moulton, T., de Campos, A. C., Stanley, C. J., Damiano, D. L. Functional Near Infrared Spectroscopy of the Sensory and Motor Brain Regions with Simultaneous Kinematic and EMG Monitoring During Motor Tasks. J. Vis. Exp. (94), e52391, doi:10.3791/52391 (2014).

View Video