神経疾患のトランスジェニックおよびノックアウトマウスモデルは、正常および異常な神経生理学における遺伝子の役割を研究するために有用である。この記事では、長期増強、自由神経病理のマウスモデルを振る舞うトランスジェニックおよびノックアウトで学習と記憶を、根底にある細胞メカニズムを研究するために使用することができる方法を説明します。
シナプス伝達効率の長期増強の研究は、潜在的な細胞メカニズム基本的な学習や情報記憶装置として、それが魅力的にする特性を有する活性依存性シナプス現象は、長い間、海馬、扁桃体の様々な神経回路の生理機能を解明するために使用されている、および他の辺縁系および皮質構造。これを念頭において、神経疾患のトランスジェニックマウスモデルは、学習、感情情報とに関与する神経回路網における正常および異常なシナプスの通信における遺伝子の役割をより深く理解を開発するために長期増強(LTP)の研究を行うために有用なプラットフォームを表す処理。この記事では、確実に自由に行動するマウスではLTPを誘導するための方法論を説明します。これらの方法論は、自由神経変性疾患のマウスモデルの挙動を、トランスジェニックおよびノックアウトの研究において使用され得る。
遺伝子を操作する技術の開発がほぼすべての神経変性および神経疾患のトランスジェニックおよびノックアウトマウスモデルを生産している。これは、以前にマウス動物モデルに大きいげっ歯類種において使用される電気生理学的研究技術の翻訳を必要としている。一つのこのような神経生理学的な調査技術は、種々の神経病理学的疾患に関与する神経回路網内のシナプス結合の有効性を試験するために使用長期増強(LTP)である。このプロトコルは、自由にマウスを振る舞うにおけるLTPの信頼性のある電気生理学的調査のための手法について説明します。他のものよりもこのプロトコルの利点は、単純で実装が容易であることであり、それはそれは高価なコンピュータ制御のマイクロドライブシステムや電界効果トランジスタのヘッドステージの使用どちらも必要としないこともなく、低コストであり、我々の知る限りでは、慢性電気生理学的記録トンの最初のビデオプロトコルですO自由にマウスを振る舞うにLTPを研究。この目的のために、我々は、この記事内で自由に行動するマウスでは長期増強を研究するための簡単な方法を説明します。これらの方法論は容易に神経病理学的疾患のトランスジェニックおよびノックアウトマウスモデルに変換することができます。
このプロトコルでは、自由に行動するマウスにおいてDG中でLTPを研究するための確実かつ簡単な方法を実証した。覚醒ラットにおけるLTPの多くの研究が3,4行われてきたが、非常に少数のは、主にマウスでは限られた頭蓋の不動産がもたらす技術的な複雑さとの平均重量を基準に、電極ヘッドステージの重みに目を覚ましたマウスで行われているマウス5。自由にマイクロドライ…
The authors have nothing to disclose.
博士ジョセフブロンズィーノ、博士ハミーアブ·Hassaballah氏RJオースティン – ラフランス、そして氏ジェシカKoranda:著者は、次のことを認めることを願っています。