Summary

金黄色葡萄球菌生长使用人血红蛋白作为铁源

Published: February 07, 2013
doi:

Summary

在这里,我们描述一个生长实验<em>金黄色葡萄球菌</em使用血红蛋白作为有效养分铁的唯一来源。此法规定参与血红蛋白衍生的铁收购的细菌因素的作用。

Abstract

金黄色葡萄球菌是一种致病细菌,需要铁来进行重要的代谢功能,导致疾病的。储层人类宿主内的铁是最丰富的血红素,这是血红蛋白的辅因子。为了获得铁血红蛋白,S.金黄色葡萄球菌利用一个复杂的系统,被称为铁规管表面的行列式(ISD)系统1。 ISD系统首次绑定主机血红蛋白的组成部分,然后提取并导入血红素,和,终于解放血红素铁在细菌胞浆2,3。通过这条途径已解剖众多的体外研究4-9。此外,ISD系统感染的贡献已被反复证明在小鼠模型中8,10-14。建立血红蛋白衍生的铁收购和增长的贡献ISD系统已被证明是更具挑战性的。生长测定血红蛋白作为唯一的铁源是复杂的by是不稳定市售血红蛋白,在生长培养基中的游离铁污染,并与铁螯合剂毒性。在这里,我们提出了一种方法,该方法克服了这些限制。从新鲜血液中制备高品质的血红蛋白,并储存于液氮中。纯化血红蛋白补充铁消耗介质模仿铁所遇到的脊椎动物宿主病原体内的恶劣环境。饥饿S.黄色葡萄球菌的最小操纵形式的血红蛋白诱导生长的方式,结合血红蛋白,提取血红素,通过血红素通过细菌的细胞壁,并降低在细胞质中的血红素的能力完全依赖于铁和补充。此法将有助于研究人员寻找阐明机制的hemoglobin-/heme-derived铁收购S.金黄色葡萄球菌和其他可能的细菌病原体。

Protocol

1。从新鲜血液中的血红蛋白纯化收购辅以抗凝剂的人新鲜血液。血液在冰上或4℃下保持整个纯化过程。 20分钟,于1500×g离心血液。的红血细胞(红细胞)将在试管底部。小心地吸出上清液,并轻轻将沉淀重悬于冰冷的0.9%(重量/体积)NaCl溶液。重复离心和洗涤3次。 在1倍体积的冰冷却的10mM Tris-HCl(pH值8.0)中重悬沉淀。这将诱导的红细胞由于渗透压的裂解。添加甲苯〜20…

Representative Results

我们人体血红蛋白溶血纯化与HPLC(协议1.7步)。 图1显示了记录洗脱液在280和410 nm波长的吸光度。收集的级分5,以及其它馏分被丢弃。五到十五毫克每毫升洗脱液血红蛋白,产量的影响通常是获得。纯化血红蛋白,一式两份,并通过SDS-PAGE分析,凝胶或蛋白质的染色,或转移到硝酸纤维素和免疫印迹(议定书步骤1.10, 图2)。 我们已评估纯化的人血?…

Discussion

铁是人体必需的营养物质,生物王国的寿命15。在脊椎动物中,铁被隔离,以避免造成此元素的毒性。封存也掩盖铁入侵的微生物的过程被称为营养免疫16。对此,病原体已经发展策略,规避营养的免疫力。一种这样的机制依赖于血红蛋白,这是最丰富的铁源内的主机17。血红蛋白被包含在红血细胞。血红蛋白受损的红血细胞释放的约束的主机结合珠蛋白,这标志着快速去?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项研究是由美国公共卫生服务补助AI69233和AI073843从国家过敏和传染病研究所的支持。 EPS是一个巴勒斯惠康研究员,传染病的发病机制。 KPH是由细胞与分子微生物学培训补助计划5 T32 A107611-10。

Materials

Name of Reagent/Material Company Catalogue Number Comments
HPLC anion exchange column Varian PL1551-3802
Drabkin’s reagent Sigma D5941-6VL
Hemoglobin standard Pointe Scientific H7506-STD
RPMI HyClone SH30011.02
Chelex 100 sodium form Sigma C7901
EDDHA LGC Standards GmbH ANC 001
Hemoglobin a antibody Santa Cruz Biotechnology, Inc SC-21005
Tryptic soy agar BD 236920

Riferimenti

  1. Mazmanian, S., et al. Passage of heme-iron across the envelope of Staphylococcus aureus. Science. 299, 906-909 (2003).
  2. Pishchany, G., Skaar, E. P. Taste for blood: hemoglobin as a nutrient source for pathogens. PLOS Pathogens. 8, e1002535 (2012).
  3. Haley, K. P., Skaar, E. P. A battle for iron: host sequestration and Staphylococcus aureus acquisition. Microbes and infection. Institut Pasteur. 14, 217-227 (2012).
  4. Krishna Kumar, K., et al. Structural basis for hemoglobin capture by Staphylococcus aureus cell-surface protein. IsdH. The Journal of biological chemistry. 286, 38439-38447 (2011).
  5. Grigg, J. C., Mao, C. X., Murphy, M. E. Iron-coordinating tyrosine is a key determinant of NEAT domain heme transfer. Journal of Molecular Biology. 413, 684-698 (2011).
  6. Villareal, V. A., et al. Transient weak protein-protein complexes transfer heme across the cell wall of Staphylococcus aureus. Journal of the American Chemical Society. 133, 14176-14179 (2011).
  7. Muryoi, N., et al. Demonstration of the iron-regulated surface determinant (Isd) heme transfer pathway in Staphylococcus aureus. J. Biol. Chem. 283, 28125-28136 (2008).
  8. Reniere, M. L., Skaar, E. P. Staphylococcus aureus haem oxygenases are differentially regulated by iron and haem. Mol. Microbiol. 69, 1304-1315 (2008).
  9. Liu, M., et al. Direct hemin transfer from IsdA to IsdC in the iron-regulated surface determinant (Isd) heme acquisition system of Staphylococcus aureus. J. Biol. Chem. 283, 6668-6676 (2008).
  10. Pishchany, G., et al. Specificity for human hemoglobin enhances Staphylococcus aureus infection. Cell Host Microbe. 8, 544-550 (2010).
  11. Pishchany, G., Dickey, S. E., Skaar, E. P. Subcellular localization of the Staphylococcus aureus heme iron transport components IsdA and IsdB. Infect. Immun. 77, 2624-2634 (2009).
  12. Torres, V. J., Pishchany, G., Humayun, M., Schneewind, O., Skaar, E. P. Staphylococcus aureus IsdB is a hemoglobin receptor required for heme iron utilization. J. Bacteriol. 188, 8421-8429 (2006).
  13. Kim, H. K., et al. IsdA and IsdB antibodies protect mice against Staphylococcus aureus abscess formation and lethal challenge. Vaccine. 28, 6382-6392 (2010).
  14. Cheng, A. G., et al. Genetic requirements for Staphylococcus aureus abscess formation and persistence in host tissues. Faseb J. 23, 3393-3404 (2009).
  15. Andreini, C., Bertini, I., Cavallaro, G., Holliday, G. L., Thornton, J. M. Metal ions in biological catalysis: from enzyme databases to general principles. J. Biol. Inorg. Chem. 13, 1205-1218 (2008).
  16. Weinberg, E. D. Iron availability and infection. Biochimica et Biophysica Acta (BBA) – General Subjects. 1790, 600-605 (2009).
  17. Drabkin, D. Metabolism of the Hemin Chromoproteins. Physiological Reviews. 31, 345-431 (1951).
  18. Graversen, J. H., Madsen, M., Moestrup, S. K. CD163: a signal receptor scavenging haptoglobin-hemoglobin complexes from plasma. The international journal of biochemistry & cell biology. 34, 309-314 (2002).
  19. Torres, V. J., et al. Staphylococcus aureus Fur regulates the expression of virulence factors that contribute to the pathogenesis of pneumonia. Infect. Immun. 78, 1618-1628 (2010).
  20. Hammer, N. D., Skaar, E. P. Molecular Mechanisms of Staphylococcus aureus Iron Acquisition. Annu. Rev. Microbiol. , (2011).
  21. Hurd, A. F., et al. The iron-regulated surface proteins IsdA, IsdB, and IsdH are not required for heme iron utilization in Staphylococcus aureus. Fems. Microbiology Letters. 329, 93-100 (2012).
  22. Boys, B. L., Kuprowski, M. C., Konermann, L. Symmetric behavior of hemoglobin alpha- and beta- subunits during acid-induced denaturation observed by electrospray mass spectrometry. Biochimica. 46, 10675-10684 (2007).
  23. Williams, R. C., Tsay, K. Y. A convenient chromatographic method for the preparation of human hemoglobin. Analytical Biochemistry. 54, 137-145 (1973).
  24. Shen, T. J., et al. Production of unmodified human adult hemoglobin in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 90, 8108-8112 (1993).
  25. Manjula, B. N., Acharya, S. A. Purification and molecular analysis of hemoglobin by high-performance liquid chromatography. Methods Mol. Med. 82, 31-47 (2003).
  26. Neilands, J. B. Microbial envelope proteins related to iron. Annual review of microbiology. 36, 285-309 (1982).
  27. Chart, H., Buck, M., Stevenson, P., Griffiths, E. Iron regulated outer membrane proteins of Escherichia coli: variations in expression due to the chelator used to restrict the availability of iron. Journal of General Microbiology. 132, 1373-1378 (1986).
  28. Rogers, H. J. Iron-Binding Catechols and Virulence in Escherichia coli. Infection and Immunity. 7, 445-456 (1973).

Play Video

Citazione di questo articolo
Pishchany, G., Haley, K. P., Skaar, E. P. Staphylococcus aureus Growth using Human Hemoglobin as an Iron Source. J. Vis. Exp. (72), e50072, doi:10.3791/50072 (2013).

View Video