Nous démontrons la technique de base pour concevoir et faire évoluer moléculaire synthétiques viral adéno-associé (AAV) vecteurs de thérapie génique par l'intermédiaire de la famille réarrangement d'ADN. En outre, nous fournir des directives générales et des exemples représentatifs de sélection et d'analyse des différents capsides chimériques avec des propriétés améliorées sur les cellules cibles en culture ou chez la souris.
Viral adéno-associé (AAV) représentent quelques-uns des véhicules les plus puissants et prometteurs pour le transfert de gène thérapeutique humaine due à une combinaison unique de propriétés bénéfiques 1. Il s'agit notamment de l'apathogenicity des virus de type sauvage sous-jacents et les méthodologies les plus avancés pour la production de haute-titre, de haute pureté et de qualité clinique des vecteurs recombinants 2. Un autre avantage particulier du système de AAV sur d'autres virus est la disponibilité d'une richesse naturelle de sérotypes qui diffèrent dans les propriétés essentielles mais peuvent tous être facilement conçue en tant que vecteurs en utilisant un protocole commun 1,2. En outre, un certain nombre de groupes, y compris notre propre ont récemment mis au point des stratégies pour utiliser ces virus naturels comme modèles pour la création de vecteurs synthétiques qui combinent des actifs soit des sérotypes d'entrée multiples, ou qui améliorent les propriétés d'un seul isolat. Les technologies respectives pour atteindre ces objectifs are soit la famille réarrangement d'ADN 3, c.-à-la fragmentation de divers gènes de capside AAV suivis par leur ré-assemblage basée sur des homologies partielles (typiquement> 80% pour les sérotypes les plus AAV), ou d'affichage, insertion peptide 4,5 c.-à-habituellement de sept acides aminés dans une boucle exposée de la capside virale, où le peptide idéalement médie re-ciblage à un type cellulaire souhaité. Pour le maximum de succès, les deux méthodes sont appliquées de façon à haut débit dans lequel les protocoles sont en place-mise à l'échelle pour obtenir des bibliothèques de près d'un million distinctes variantes de capside. Chaque clone est alors composé d'une combinaison unique de nombreux virus parentaux (DNA shuffling approche) ou contient un peptide particulier au sein de l'épine dorsale même virale (approche affichage peptide). L'étape finale ultérieure est itératif de sélection d'une telle bibliothèque sur les cellules cibles afin d'enrichir de capsides individuels répondant à la plupart ou idéalement à toutes les exigences du processus de sélection. Ce dernier préférence peigneines pression positive, tels que la croissance sur un type de cellule certain intérêt, avec une sélection négative, pour l'élimination de toutes les capsides exemple réagissant avec des anticorps anti-AAV. Cette combinaison augmente les chances que les capsides synthétiques survivants de la sélection correspondent aux besoins de l'application donnée d'une manière qui n'aurait probablement pas été trouvée dans aucun naturellement AAV isoler. Ici, nous nous concentrons sur la méthode de la famille de réarrangement d'ADN que l'théoriquement et expérimentalement plus difficile des deux technologies. Nous décrire et démontrer toutes les étapes essentielles pour la génération et la sélection des bibliothèques AAV mélangées (Fig. 1), puis de discuter les pièges et les aspects critiques des protocoles que l'on doit être au courant afin de réussir avec AAV l'évolution moléculaire.
Ici, nous avons esquissé essentiels étapes expérimentales et les lignes directrices pour AAV capside d'ingénierie via la famille réarrangement d'ADN et de l'évolution dans les cellules ou chez l'animal. En substance, ces protocoles sont des versions normalisées des procédures nous avons d'abord signalés dans le domaine de l'AAV en 2008 3. Alors qu'une vague de suivi des études par d'autres ont rapporté de nombreux ex modifications, 10-13, nos vers…
The authors have nothing to disclose.
Les auteurs tiennent à remercier le soutien exceptionnel de leur laboratoire, membres de l'équipe et le travail par le Pôle d'excellence de CellNetworks à l'Université de Heidelberg ainsi que par le Chica et Heinz Schaller (CHS) de la Fondation. Nous apprécions que l'évolution moléculaire AAV par l'ADN de la famille brassage est devenue un domaine très actif depuis notre publication initiale il ya trois ans et, par conséquent présenter des excuses à tous les auteurs de publications pertinentes, dont le travail ne pouvait pas être cité ici en raison de contraintes d'espace.
Name of the reagent | Company | Catalogue number |
DNase I | Invitrogen | 18068-015 |
Polyethylenimine (PEI) | Sigma-Aldrich | 408727 |
Restriction enzymes | NEB | Various |
T4 DNA Ligase | NEB | M0202T |
Gel extraction kit | Qiagen | 28704 |
Phusion II polymerase Kit | Finnzymes (NEB) | F-540S |
HotStar Hifi polymerase Kit | Qiagen | 202602 |
DMSO | Finnzymes (NEB) | F-540S (part of kit) |
EDTA (25 mM) | Invitrogen | 18068-015 (part of kit) |
Tris | Roth | 4855.2 |
Ampicilin sodium salt | Roth | K029.2 |
dNTPs (10 mM, 100 μl) | Invitrogen | 18427013 |
Iodixanol (OptiPrep) | Axis-shield | 1114739 |
Phenolred | Merck | 107241 |
Plasmid mega prep kit | Qiagen | 12181 |
Ultracentrifuge | Beckman-Coulter | Optima L90K |
Quick-Seal centrifuge tubes | Beckman-Coulter | 342414 |
Electroporation unit | Bio-Rad | GenePulserXcell |
Thermal cycler | Eppendorf | Vapo Protect |
Heating block | BIOER | MB-102 |
Fluorescence microscope | Olympus | IX81 |
FACS analyser | Beckman-Coulter | Cytomics FC500 MLP |
MegaX DH10B T1R cells | Invitrogen | C640003 |
Benzonase | Merck | 101695 |
Adenovirus-5 | ATCC | VR-5 |
pBlueScript II KS(+) plasmid | Stratagene | 212207 |
cap5F (Pac I site in yellow, cap5-specific sequences in bold): GACTCTTAATTAACAGGTATGTCTTTTGTTGATCACCCTCC |
IDTDNA | Custom primer |
cap5R (Asc I site in green, cap5-specific sequences in bold): GTGAGGGCGCGCCTTAAAGGGGTCGGGTAAGGTATC |
IDTDNA | Custom primer |