Summary

免疫组化标记在感觉神经元树突的微管,气管,并在肌肉果蝇幼虫体壁

Published: November 10, 2011
doi:

Summary

要理解的复杂的细胞形状,如神经细胞树突,如何在发展过程中取得的,重要的是要能够准确地检测微管组织。在这里,我们描述了一个强大的免疫组化标记法研究微管组织的感觉神经元树突树突分枝,气管,肌肉,及其他<em>果蝇</em>幼虫体壁组织。

Abstract

要了解如何实现复杂的细胞形态的差异,重要的是要准确地按照微管组织。 果蝇幼虫体壁含有几种类型的细胞模型来研究细胞和组织的形态发生。例如气管是用于检查1,管形态发生和感觉神经元的果蝇幼虫一般的澄清和神经树突状分化2-5变性 6级的具体机制已成为一个主要系统的树突状树枝状( DA) 。

之间的神经元类,树突分支的形状可以显著不同,甚至在单个神经元的不同分支 7,8中。 DA能神经元的遗传研究表明,差的细胞骨架的组织可以在树突分支形状4,9-11形态差异的基础。我们提供了一个强大的免疫标记法到ssay 在体内 DA的感觉神经元枝蔓乔木微管组织(图1,2,电影1)。该协议说明了第一龄幼虫的解剖和免疫组化,一个阶段,积极的感觉神经元树突生长和分支组织时发生12,13。

除了染色的感觉神经元,这种方法实现了强大的标签(电影2,3)微管在肌肉组织,气管(图3,电影3),和其他的体壁组织。这是宝贵的希望分析在体壁的微管组织调查机制时,在原地调查控制的组织和细胞的形状。

Protocol

1。试剂的制备 注:在开始之前进行解剖和免疫组化染色在磁场室和幼虫是使用特殊形状的昆虫引脚牵制。磁性室的建设,编制这些引脚的详细说明, 可以发现在14,15相关文献。简单地说,一个1x1cm方孔切成磁性表贴表,使一个小室的后部盖玻片。双方室是密封的环氧树脂胶,这种胶后室是用70%乙醇使用前清洗几次。准备解剖昆虫引脚弯曲所需要的形状,…

Discussion

要理解复杂的细胞形态如何实现它重要的是要能够准确地检测微管组织。在这里,我们描述了一个强大的免疫组化标签方法检测树突状树枝状感觉神经元的树突的微管组织。除了染色的感觉神经元,这种方法实现了强大的气管,肌肉和其他体壁组织的免疫组化染色。

我们使用此协议,研究开发的DA能神经元的感官树突微管组织。这些树突是非常敏感,受伤或应力25,?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

我们感谢理化学研究所的资金。 P10 – GAL4阿兰文森特(保罗萨巴蒂尔大学,法国图卢兹)是一种礼物。

Materials

Name of the reagent Company Catalogue
number
Comments
(optional)
Forceps Dumont 11251-20  
Microscissors FST 15000-08  
Mouse anti-α-tubulin (Clone: DM1A) Sigma T9026 Dilution 1/1000
Mouse anti-Futsch (Clone: 22C10),
supernatant
Developmental
Studies
Hybridoma Bank
22C10 Dilution 1/1000
Rat anti-CD8 (Clone: 5H10) Caltag MCD0800 Dilution 1/1000
Alexa Fluor 488 anti-mouse IgG Invitrogen A-11001 Dilution 1/500
Cy3 anti-Rat IgG Jackson Immunoresearch 712-166-150 Dilution 1/200

Riferimenti

  1. Schottenfeld, J., Song, Y., Ghabrial, A. S. Tube continued: morphogenesis of the Drosophila tracheal system. Curr. Opin. Cell. Biol. 22, 633-639 (2010).
  2. Gao, F. B., Brenman, J. E., Jan, L. Y., Jan, Y. N. Genes regulating dendritic outgrowth, branching, and routing in Drosophila. Genes Dev. 13, 2549-2561 (1999).
  3. Corty, M. M., Matthews, B. J., Grueber, W. B. Molecules and mechanisms of dendrite development in Drosophila. Development. 136, 1049-1061 (2009).
  4. Moore, A. W. Intrinsic mechanisms to define neuron class-specific dendrite arbor morphology. Cell. Adh. Migr. 2, 81-82 (2008).
  5. Grueber, W. B., Jan, L. Y., Jan, Y. N. Tiling of the Drosophila epidermis by multidendritic sensory neurons. Development. 129, 2867-2878 (2002).
  6. Nishimura, Y. Selection of Behaviors and Segmental Coordination During Larval Locomotion Is Disrupted by Nuclear Polyglutamine Inclusions in a New Drosophila Huntington’s Disease-Like Model. J. Neurogenet. 24, 194-206 (2010).
  7. Ramon y Cajal, S. . Histology of the nervous system of man and vertebrates, 1995 translation. , (1911).
  8. London, M., Hausser, M. Dendritic computation. Annu. Rev. Neurosci. 28, 503-532 (2005).
  9. Jinushi-Nakao, S. Knot/Collier and cut control different aspects of dendrite cytoskeleton and synergize to define final arbor shape. Neuron. 56, 963-978 (2007).
  10. Li, W., Gao, F. B. Actin filament-stabilizing protein tropomyosin regulates the size of dendritic fields. J. Neurosci. 23, 6171-6175 (2003).
  11. Ye, B. Differential regulation of dendritic and axonal development by the novel Kruppel-like factor Dar1. J. Neurosci. 31, 3309-3319 (2011).
  12. Parrish, J. Z., Xu, P., Kim, C. C., Jan, L. Y., Jan, Y. N. The microRNA bantam functions in epithelial cells to regulate scaling growth of dendrite arbors in drosophila sensory neurons. Neuron. 63, 788-802 (2009).
  13. Sugimura, K. Distinct developmental modes and lesion-induced reactions of dendrites of two classes of Drosophila sensory neurons. J. Neurosci. 23, 3752-3760 (2003).
  14. Budnik, V., Gorczyca, M., Prokop, A. Selected methods for the anatomical study of Drosophila embryonic and larval neuromuscular junctions. Int. Rev. Neurobiol. 75, 323-365 (2006).
  15. Sullivan, W., Ashburner, M., Hawley, R. S. . Drosophila Protocols. , (2000).
  16. Shimono, K. Multidendritic sensory neurons in the adult Drosophila abdomen: origins, dendritic morphology, and segment- and age-dependent programmed cell death. Neural. Dev. 4, 37-37 (2009).
  17. Colomb, S., Joly, W., Bonneaud, N., Maschat, F. A concerted action of Engrailed and Gooseberry-Neuro in neuroblast 6-4 is triggering the formation of embryonic posterior commissure bundles. PLoS One. 3, 2197-2197 (2008).
  18. Dubois, L. Collier transcription in a single Drosophila muscle lineage: the combinatorial control of muscle identity. Development. 134, 4347-4355 (2007).
  19. Feng, Y., Ueda, A., Wu, C. F. A modified minimal hemolymph-like solution, HL3.1, for physiological recordings at the neuromuscular junctions of normal and mutant Drosophila larvae. J Neurogenet. 18, 377-402 (2004).
  20. Hummel, T., Krukkert, K., Roos, J., Davis, G., Klambt, C. Drosophila Futsch/22C10 is a MAP1B-like protein required for dendritic and axonal development. Neuron. 26, 357-370 (2000).
  21. Zipursky, S. L., Venkatesh, T. R., Teplow, D. B., Benzer, S. Neuronal development in the Drosophila retina: monoclonal antibodies as molecular probes. Cell. 36, 15-26 (1984).
  22. Brent, J., Werner, K., McCabe, B. D. Drosophila Larval NMJ Immunohistochemistry. J. Vis. Exp. (25), e1108-e1108 (2009).
  23. Karim, M. R., Moore, A. W. Morphological Analysis of Drosophila Larval Peripheral Sensory Neuron Dendrites and Axons Using Genetic Mosaics. J. Vis. Exp. (57), e3111-e3111 (2011).
  24. Brent, J. R., Werner, K. M., McCabe, B. D. Drosophila Larval NMJ Dissection. J. Vis. Exp. (24), e1107-e1107 (2009).
  25. Tao, J., Rolls, M. M. Dendrites have a rapid program of injury-induced degeneration that is molecularly distinct from developmental pruning. J. Neurosci. 31, 5398-5405 (2011).
  26. Yamamoto, M., Ueda, R., Takahashi, K., Saigo, K., Uemura, T. Control of axonal sprouting and dendrite branching by the Nrg-Ank complex at the neuron-glia interface. Curr. Biol. 16, 1678-1683 (2006).
  27. Mattie, F. J. Directed microtubule growth, +TIPs, and kinesin-2 are required for uniform microtubule polarity in dendrites. Curr. Biol. 20, 2169-2177 (2010).
  28. Pawson, C., Eaton, B. A., Davis, G. W. Formin-dependent synaptic growth: evidence that Dlar signals via Diaphanous to modulate synaptic actin and dynamic pioneer microtubules. J. Neurosci. 28, 11111-11123 (2008).
  29. Williams, D. W., Tyrer, M., Shepherd, D. Tau and tau reporters disrupt central projections of sensory neurons in Drosophila. J. Comp. Neurol. 428, 630-640 (2000).

Play Video

Citazione di questo articolo
Yalgin, C., Karim, M. R., Moore, A. W. Immunohistological Labeling of Microtubules in Sensory Neuron Dendrites, Tracheae, and Muscles in the Drosophila Larva Body Wall. J. Vis. Exp. (57), e3662, doi:10.3791/3662 (2011).

View Video