Summary

Die Verwendung einer optischen Falle für das Studium der Wirt-Pathogen-Interaktionen für Dynamic Live Cell Imaging

Published: July 28, 2011
doi:

Summary

Eine Methode ist beschrieben, einzeln auswählen, bearbeiten und Bild zu leben Erreger mit einer optischen Falle gekoppelt an eine sich drehende Scheibe Mikroskop. Die optische Falle bietet räumliche und zeitliche Steuerung von Organismen und legt sie neben Wirtszellen. Fluoreszenzmikroskopie erfasst dynamische interzelluläre Wechselwirkungen mit minimaler Störung der Zellen.

Abstract

Dynamische Live Cell Imaging ermöglicht die direkte Visualisierung von Echtzeit-Interaktionen zwischen den Zellen des Immunsystems 1, 2, aber der Mangel an räumlicher und zeitlicher Steuerung zwischen den Fresszellen und Mikroben geleistet hat Beobachtungen in den ersten Interaktionen von Wirt Reaktion auf Krankheitserreger konzentrieren schwierig. Historisch gesehen haben interzellulären Kontakt Veranstaltungen wie Phagozytose 3 durch Mischen von zwei Zelltypen abgebildet worden, und dann kontinuierlich Scannen der field-of-view, um serendipitous interzellulären Kontakte auf der entsprechenden Stufe der Interaktion zu finden. Die stochastische Natur dieser Ereignisse macht dieses Verfahren langwierig, und es ist schwer zu früh oder flüchtige Ereignisse in Zell-Zell-Kontakt durch diesen Ansatz zu beobachten. Diese Methode erfordert finden Zellpaaren, dass am Rande der Kontakt sind, und beobachtet sie, bis sie vollendet ihre Kontaktdaten, oder nicht. Um diese Einschränkungen nutzen wir optische Fallen als nicht-invasive, nicht-destruktive, sondern eine schnelle und effektive Methode, um Zellen in Kultur positionieren.

Optische Fallen oder optische Pinzette, sind zunehmend in der biologischen Forschung eingesetzt, um zu erfassen und physisch zu manipulieren Zellen und anderen Mikrometergröße Teilchen in drei Dimensionen 4. Strahlungsdruck wurde zum ersten Mal beobachtet und auf optische Pinzette-Systeme in 1970 5, 6, und wurde zum ersten Mal verwendet werden, um biologische Proben im Jahr 1987 7 zu steuern. Seither haben optische Pinzette in eine Technologie ausgereift, um eine Vielzahl biologischer Phänomene 8-13 Sonde.

Wir beschreiben eine Methode, 14, die Fortschritte Live Cell Imaging durch die Integration einer optischen Falle mit Spinning-Disk-konfokale Mikroskopie mit Temperatur und Luftfeuchtigkeit auf exquisite räumliche und zeitliche Steuerung von pathogenen Organismen in einer physiologischen Umgebung bieten, um Wechselwirkungen mit Wirtszellen, wie die ermittelten erleichtern Betreiber. Live, wurden pathogene Organismen wie Candida albicans und Aspergillus fumigatus, die tödlich enden, invasive Infektionen bei immungeschwächten Personen 15, 16 (z. B. AIDS, Chemotherapie und Organtransplantation Patienten) kann dazu führen, optisch gefangen mit zerstörungsfreien Laserintensitäten und zog neben Makrophagen, die den Erreger phagozytieren können. Hohe Auflösung, Durchlicht und Fluoreszenz-basierten Filmen etabliert die Fähigkeit zur frühen Ereignisse der Phagozytose in lebenden Zellen zu beobachten. Zur Demonstration der breiten Anwendbarkeit in der Immunologie, wurden primäre T-Zellen auch gefangen und manipuliert werden, um Synapsen mit anti-CD3 beschichteten Mikrokügelchen in vivo bilden und Zeitraffer-Bildgebung der Synapsenbildung wurde ebenfalls erhalten. Durch die Bereitstellung einer Methode, um feine räumliche Steuerung von Live-Erreger in Bezug auf Immunzellen ausüben können zelluläre Interaktionen mittels Fluoreszenzmikroskopie mit minimaler Störung von Zellen aufgenommen werden und können leistungsfähige Einblick in frühen Reaktionen der angeborenen und erworbenen Immunität zu erhalten.

Protocol

1. Kultur Bedingungen von Krankheitserregern für optische Fallen Wachsen A. fumigatus (B-5233/RGD12-8) auf einem semi-Agar-Medien mit SBD (Sabouraud Dextrose) bei 30 ° C für 3 Tage. Wachsen C. albicans (SC5314) in YPD (Hefe-Pepton Dextrose) Flüssigkultur mit 100 ug / ml Ampicillin über Nacht in einem Schüttelinkubator bei 30 ° C. 2. Vorbereitung von Krankheitserregern für Fluoreszenzmarkierung Ernte gewünschten Betrag von Krank…

Discussion

In dieser Arbeit verwenden wir einen optischen Falle auf Krankheitserreger mit Abmessungen zwischen 3 um einzufangen – 5 pm. Obwohl Krankheitserreger von Interesse für unser Labor in der Regel diese Dimensionen haben, ist die optische Pinzette hier beschriebene System flexibel auf eine Vielzahl von Größen Falle. In der Tat optische Fallen wurden verwendet, um Partikel von einzelnen Atomen, Zellen etwa 10 um im Durchmesser erfassen. Zusätzlich wurde diese optische Fallen System in der Lage, Partikel in verschiedenen …

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Diese Arbeit wurde vom Massachusetts General Hospital Department of Medicine Internal Funds (JMT, MKM, MLC, JMV), National Institute of Biomedical Imaging and Bioengineering gewähren T32EB006348 (CEC), Massachusetts General Hospital Center for Computational and Integrative Biology Fonds für die Entwicklung und AI062773 unterstützt ( RJH), Zuschüsse AI062773, DK83756 und DK 043351 (RJX), NSF 0643745 (MJL), NIH R21CA133576 (MJL) und National Institute of Allergy and Infectious Diseases (NIAID) der National Institutes of Health (NIH) AI057999 (JMV ). Wir danken Nicholas C. Yoder für hilfreiche Diskussionen und Charles Filze (RPI, Inc.) für die technische Unterstützung.

Materials

Name of the reagent Company Catalogue number Comments (optional)
A. fumigatus     Albino strain, B-5233/RGD12-8, gift from K.J. Kwon-Chung, NIH
C. albicans     SSY50-B mutant, gift from Eleftherios Mylonakis, MGH; SC5314 strain, gift from Gerald Fink, Whitehead Institute
Alexa Fluor 488 Invitrogen A20000  
Alexa Fluor 647 Invitrogen A20006  
dimethylformamide Sigma D4551  
Fresh blood     Gift from R.J.W. Heath, MGH, HMS
Nikon inverted microscope Nikon   Model Ti-E
Trapping laser, ChromaLase Blue Sky Research CLAS-106-STF02-02  
Fluorescence excitation laser Coherent   Model Innova 70C
Breadboards for trapping components Thorlabs MB1224, MB1218  
Optical air table Technical Manufacturing Corporation    
Electronic shutter with pedal control Uniblitz   Purchased from Vincent Associates, Rochester, NY
Singlemode optical fiber Oz Optics PMJ-3S3S-1064-6  
Fiber positioner Thorlabs PAF-X-5-C  
Fiber collimator Oz Optics HPUCO-23-1064-P-25AC  
Lenses for telescope Thorlabs AC254-150-B Focal length of 150 mm
Translation stages (x, y, z) Newport M-461-XYZ  
IR dichroic mirror Chroma ET750-sp-2p8  
Objective lens (100X) Nikon   NA = 1.49, oil immersion, TIRF objective
Confocal head Yokogawa CSU-XI  
Polarizer Nikon MEN51941  
Wollaston prism Nikon MBH76190  
EM-CCD camera Hamamatsu C9100-13  
CCD camera (ORCA ER) Hamamatsu C4742-80-12AG  
Filter wheel Ludl 99A353  
Filter wheel Sutter LB10-NWE  
Chambered coverglass Lab-Tek/Nunc 155409  
Dynabeads Invitrogen 111-51D Coated with anti-CD3
Dulbecco’s modified Eagle’s medium (DMEM) Invitrogen/Gibco 10313  
Penicillin/streptomycin Invitrogen/Gibco 15140-122  
L-glutamine Invitrogen/Gibco 25030-081  
Fetal Bovine Serum (HyClone) ThermoScientific SH30071.03  

Riferimenti

  1. Grakoui, A. The immunological synapse: A molecular machine controlling T cell activation. Science. 285, 221-227 (1999).
  2. Monks, C. R. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature. 395, 82-86 (1998).
  3. Stuart, L. M., Ezekowitz, R. A. Phagocytosis and comparative innate immunity: Learning on the fly. Nat Rev Immunol. 8, 131-141 (2008).
  4. Neuman, K. C., Block, S. M. Optical trapping. Rev Sci Instrum. 75, 2787-2809 (2004).
  5. Ashkin, A. Optical trapping and manipulation of neutral particles using lasers. Proc Natl Acad Sci USA. 94, 4853-4860 (1997).
  6. Ashkin, A. Acceleration and trapping of particles by radiation pressure. Phys Rev Lett. 24, 156-159 (1970).
  7. Ashkin, A., Dziedzic, J. Optical trapping and manipulation of viruses and bacteria Science. Nature. 235, 1517-1520 (1987).
  8. Khalil, A. S. Single M13 bacteriophage tethering and stretching. Proc Natl Acad Sci USA. 104, 4892-4897 (2007).
  9. Khalil, A. S. Kinesin’s cover-neck bundle folds forward to generate force. Proc Natl Acad Sci USA.. 105, 19247-19252 (2008).
  10. Li, Z. Membrane tether formation from outer hair cells with optical tweezers. Biophys J. , 1386-1395 (2002).
  11. Kim, S. The αβ T cell receptor is an anisotropic mechanosensor. J Biol Chem. 284, 31028-31028 (2009).
  12. Mohanty, S., Mohanty, K., Gupta, P. Dynamics of interaction of RBC with optical tweezers. Opt. Express. 13, 4745-4751 (2005).
  13. Tam, J. Control and manipulation of pathogens with an optical trap for live cell imaging of intercellular interactions. PLoS One. 5, e15215-e15215 (2010).
  14. Lin, S. J., Schranz, J., Teutsch, S. M. Aspergillosis case-fatality rate: Systematic review of the literature. Clin Infect Dis.. 32, 358-366 (2001).
  15. Wey, S. B. Hospital-acquired candidemia – the attributable mortality and excess length of stay. Arch. Intern. Med. 148, 2642-2645 (1988).

Play Video

Citazione di questo articolo
Tam, J. M., Castro, C. E., Heath, R. J. W., Mansour, M. K., Cardenas, M. L., Xavier, R. J., Lang, M. J., Vyas, J. M. Use of an Optical Trap for Study of Host-Pathogen Interactions for Dynamic Live Cell Imaging. J. Vis. Exp. (53), e3123, doi:10.3791/3123 (2011).

View Video