Source: Whitebirch, A. C. Acute Mouse Brain Slicing to Investigate Spontaneous Hippocampal Network Activity. J. Vis. Exp. (2020)
The video demonstrates a procedure to record the local field potential (LFP) in mouse hippocampal-entorhinal cortex slices. Electrical stimulation is provided at the CA3 stratum radiatum of the hippocampus, which causes changes in the postsynaptic potential at the CA1 stratum pyramidale. The combined change in the membrane potential of CA1 neurons, termed the local field potential, is recorded.
All procedures involving sample collection have been performed in accordance with the institute's IRB guidelines.
1. Transcardial perfusion
2. Extract the brain and cut slices
3. Perform local field potential (LFP) recordings of spontaneous activity
Figure 1: Preparation of horizontal angled hippocampal-entorhinal cortex (HEC) slices. (A)(i) After extracting the brain, perform two coronal cuts with a razor blade to remove the posterior and anterior portions of the brain. (ii) The agar ramp is formed of two angled portions glued to the microtome slicing platform. To prepare slices of the intermediate hippocampus, place the brain block onto the agar ramp with the anterior surface facing up the slope and making contact with the tall backing portion of the ramp. To prepare slices of more ventral hippocampus, place the brain block onto the agar ramp with the anterior surface facing down the slope, so that the posterior cut surface makes contact with the tall backing portion of the ramp. (iii) As each slice is freed, perform several more cuts with the scalpel to separate the hemispheres and remove unnecessary tissue. (B) Representative image of the resulting slice with cell nuclei labeled by DAPI. (C) In an interface recovery chamber, slices are placed on pieces of lens paper on top of a stainless steel or nylon mesh, level with the surface of the ACSF. A ceramic bubbler conveys carbogen into the chamber and a magnetic stir bar continually mixes the fluid in the chamber. A thin film of ACSF covers the top surface of the slice, enhancing diffusion of oxygen from the humid carbogen-rich air of the chamber.
Figure 2: Dual surface superfusion recording chamber with pulsation dampener in the ACSF delivery tubing. (A) Diagram of the superfusion system. ACSF is warmed to 32 ˚C, constantly bubbled with carbogen gas, and delivered at approximately 8–10 mL/min using a peristaltic pump with a pulsation dampener consisting of a series of air-filled syringes. (B) The recording chamber consists of three 3D-printed layers, the middle of which is strung with nylon filament. The slice rests upon this strung filament and ACSF flows above and below the tissue.
Figure 3: Representative recordings of spontaneous sharp-wave ripples from HEC slices. (A) A simplified diagram of the HEC slice showing the positions of the recording and stimulation electrodes. (B) Representative recordings of LFP activity from both an active, healthy slice and a suboptimal slice. The healthy slice (left, in green) shows large evoked field responses and spontaneous sharp-wave ripples (SWRs), visible as irregularly occurring positive deflections in the local field potential of the SP layer. In contrast, an unhealthy slice shows small, evoked field responses and no spontaneous activity (right, in gray). (C) Representative recordings of SWRs in the CA2 region, consisting of a negative deflection in the LFP in the SR layer and a high frequency oscillation with an underlying positive deflection in the LFP in the SP layer. Peaks in each channel greater than three standard deviations of the signal amplitude are highlighted in red. A bandpass filter of 2–30 Hz isolates the underlying positive and negative envelope of the sharp wave in the SP and SR layer, respectively, while a bandpass filter of 80–250 Hz is used to isolate the high-frequency oscillation of the ripple in the SP layer. (D) SWRs in vitro propagate from CA2/CA3 to CA1. In these representative recordings, SWRs in CA2 (green, bottom) precede that in CA1 (blue, top) by several milliseconds. Peaks in each channel greater than three standard deviations of the signal amplitude are highlighted in red.
The authors have nothing to disclose.
Acute brain slice incubation holder | NIH 3D Print Exchange | 3DPX-001623 | Designed by ChiaMing Lee, available at https://3dprint.nih.gov/discover/3dpx-001623 |
Adenosine 5′-triphosphate magnesium salt | Sigma Aldrich | A9187-500MG | |
Ag-Cl ground pellets | Warner | 64-1309, (E205) | |
agar | Becton, Dickinson | 214530-500g | |
ascorbic acid | Alfa Aesar | 36237 | |
beaker (250 mL) | Kimax | 14000-250 | |
beaker (400 mL) | Kimax | 14000-400 | |
biocytin | Sigma Aldrich | B4261 | |
blender | Oster | BRLY07-B00-NP0 | |
Bonn scissors, small | becton, Dickinson | 14184-09 | |
borosilicate glass capillaries with filament (O.D. 1.5 mm, I.D. 0.86 mm, length 10 cm) | Sutter Instruments | BF150-86-10HP | Fire polished capillaries are preferable. |
calcium chloride solution (1 M) | G-Biosciences | R040 | |
camera | Olympus | OLY-150 | |
compressed carbogen gas (95% oxygen / 5% carbon dioxide) | Airgas | X02OX95C2003102 | |
compressed oxygen | Airgas | OX 200 | |
constant voltage isolated stimulator | Digitimer Ltd. | DS2A-Mk.II | |
coverslips (22×50 mm) | VWR | 16004-314 | |
cyanoacrylate adhesive | Krazy Glue | KG925 | Ideally use the brush-on form for precision |
data acquisition software | Axograph | N/A | Any equivalent software (e.g. pClamp) would work. |
Dell Precision T1500 Tower Workstation Desktop | Dell | N/A | Catalog number will depend on specific computer – any computer will work as long as it can run electrophysiology acquisition software. |
Digidata 1440A | Molecular Devices | 1-2950-0367 | |
digital timer | VWR | 62344-641 | 4-channel Traceable timer |
disposable absorbant pads | VWR | 56616-018 | |
dissector scissors | Fine Science Tools | 14082-09 | |
double-edge razor blades | Personna | BP9020 | |
dual automatic temperature controller | Warner Instrument Corporation | TC-344B | |
dual-surface or laminar-flow optimized recording chamber | N/A | N/A | The chamber presented in this protocol is custom made. A commercial equivalent would be the RC-27L from Warner Instruments. |
equipment rack | Automate Scientific | FR-EQ70" | A rack is not strictly necessary but useful for organizing electrophysiology |
Ethylene glycol-bis(2-aminoethyiether)- N,N,N',N'-teetraacetic acid (EGTA) | Sigma Aldrich | 324626-25GM | |
filter paper | Whatman | 1004 070 | |
fine scale | Mettler Toledo | XS204DR | |
Flaming/Brown micropipette puller | Sutter Instruments | P-97 | |
glass petri dish (100 x 15 mm) | Corning | 3160-101 | |
glucose | Fisher Scientific | D16-1 | |
Guanosine 5′-triphosphate sodium salt hydrate | Sigma Aldrich | G8877-250MG | |
ice buckets | Sigma Aldrich | BAM168072002-1EA | |
isoflurane vaporizer | General Anesthetic Services | Tec 3 | |
lab tape | Fisher Scientific | 15-901-10R | |
lens paper | Fisher Scientific | 11-996 | |
light source | Olympus | TH4-100 | |
magnesium chloride solution (1 M) | Quality Biological | 351-033-721EA | |
magnetic stir bars | Fisher Scientific | 14-513-56 | Catalog number will be dependent on the size of the stir bar. |
micromanipulator | Luigs & Neumann | SM-5 | |
micromanipulator (manual) | Scientifica | LBM-2000-00 | |
microscope | Olympus | BX51WI | |
microspatula | Fine Science Tools | 10089-11 | |
monitor | Dell | 2007FPb | |
MultiClamp 700B Microelectrode Amplifier | Molecular Devices | MULTICLAMP 700B | The MultiClamp 700B should include headstages, pipette holders, and a model cell. |
N-(2-Hydroxyethyl)piperazine-N′-(2-ethanesulfonic acid), (HEPES) | Sigma Aldrich | H3375-25G | |
needle (20 gauge, 1.5 in length) | Becton, Dickinson | 305176 | |
nylon filament | YLI Wonder Invisible Thread | 212-15-004 | size 0.004. This cat. # is from Amazon.com |
nylon mesh | Warner Instruments Corporation | 64-0198 | |
perstaltic pump | Harvard Apparatus | 70-2027 | |
Phosphocreatine di(tris) salt | Sigma Aldrich | P1937-1G | |
pipette holders | Molecular Devices | 1-HL-U | |
platinum wire | World Precision | PT0203 | |
polylactic acid (PLA) filament | Ultimaker | RAL 9010 | |
potassium chloride | Sigma Aldrich | P3911-500G | |
potassium gluconate | Sigma Aldrich | 1550001-200MG | |
potassium hydroxide | Sigma Aldrich | 60377-1KG | |
razor blades | VWR | 55411-050 | |
roller clamp | World Precision Instruments | 14041 | |
scale | Mettler Toledo | PM2000 | |
scalpel handle | Fine Science Tools | 10004-13 | |
slice harp | Warner | SHD-26GH/2 | |
sodium bicarbonate | Fisher Chemical | S233-500 | |
sodium chloride | Sigma Aldrich | S9888-1KG | |
sodium phosphate monobasic anhydrous | Fisher Chemical | S369-500 | |
sodium pyruvate | Fisher Chemical | BP356-100 | |
spatula | VWR | 82027-520 | |
spatula/spoon, large | VWR | 470149-442 | |
sterile scalpel blades | Feather | 72044-10 | |
stirrer / hot plate | Corning | 6795-220 | |
stopcock valves, 1-way | World Precision Instruments | 14054 | |
stopcock valves, 3-way | World Precision Instruments | 14036 | |
sucrose | Acros Organics | AC177142500 | |
support for swivel clamps | Fisher Scientific | 14-679Q | |
surgical scissors, sharp/blunt | Fine Science Tools | 14001-12 | |
syringe (1 mL) | Becton, Dickinson | 309659 | |
syringe (60 mL with Luer-Lok tip) | Becton, Dickinson | 309653 | |
three-pronged clamp | Fisher Scientific | 05-769-8Q | |
tissue forceps, large | Fine Science Tools | 11021-15 | |
tissue forceps, small | Fine Science Tools | 11023-10 | |
transfer pipettes | Fisher Scientific | 13-711-7M | |
tubing | Tygon | E-3603 | ID 1/16 inch, OD 3/16 inch |
tubing | Tygon | R-3603 | ID 1/8 inch, OD 1/4 inch |
vacuum grease | Dow Corning | 14-635-5D | |
vibrating blade microtome | Leica | VT 1200S | |
vibration-dampening table with faraday cage | Micro-G / TMC-ametek | 2536-516-4-30PE | |
volumetric flask (1 L) | Kimax | KIM-28014-1000 | |
volumetric flask (2 L) | PYREX | 65640-2000 | |
warm water bath | VWR | 1209 |