Summary

生成和共培养小鼠原代小胶质细胞和皮质神经元

Published: July 26, 2024
doi:

Summary

该方案描述了从胚胎第 15-16 天从小鼠胚胎中分离的原代神经元细胞和出生后第 1-2 天从新生小鼠大脑产生的原代小胶质细胞建立的小胶质细胞-神经元共培养物。

Abstract

小胶质细胞是中枢神经系统 (CNS) 的组织驻留巨噬细胞,执行支持神经元健康和 CNS 稳态的许多功能。它们是与 CNS 疾病活动相关的免疫细胞的主要群体,采用反应性表型,在慢性神经退行性疾病(如多发性硬化症 (MS))期间可能导致神经元损伤。由于解决小胶质细胞、神经元和其他 CNS 环境因素之间复杂的 体内 相互作用的挑战,小胶质细胞在健康和疾病期间调节神经元功能和存活的不同机制仍然有限。因此,共培养小胶质细胞和神经元的 体外 方法仍然是研究小胶质细胞-神经元相互作用的宝贵工具。在这里,我们提出了一种从小鼠生成和共培养原代小胶质细胞和神经元的方案。具体来说,在出生后 0-2 天之间,从来自新生小鼠脑匀浆的混合胶质细胞培养物 分离出小胶质细胞。在胚胎第 16-18 天之间从小鼠胚胎的脑皮层中分离出神经元细胞。 体外 4-5 天后,将神经元细胞接种在 96 孔板中,然后加入小胶质细胞以形成共培养物。仔细的时间安排对于该方案至关重要,因为两种细胞类型都需要达到实验成熟度才能建立共培养。总体而言,这种共培养可用于研究小胶质细胞-神经元相互作用,并且可以提供多种读数,包括免疫荧光显微镜检查、实时成像以及 RNA 和蛋白质检测。

Introduction

小胶质细胞是组织驻留的巨噬细胞,可促进中枢神经系统 (CNS) 的免疫监视和稳态1,2,3。它们起源于卵黄囊红髓样祖细胞,在胚胎发育过程中定植于大脑 4,5,6并通过自我更新(涉及增殖和细胞凋亡)在生物体的整个生命周期中维持7。在稳态时,静息小胶质细胞分化形态并参与组织监测 8,9,10

小胶质细胞表达许多细胞表面受体,这使它们能够快速响应 CNS 的变化11,12并在感染或组织损伤的情况下促进炎症反应 12,13,14,以及在神经退行性疾病期间 9,15,如多发性硬化症 (MS)16,17.小胶质细胞还表达各种神经递质和神经肽的受体 18,19,20,这表明它们也可能响应并调节神经元活动 21,22。事实上,小胶质细胞和神经元以各种形式的双向通讯相互作用 8,23,例如由膜蛋白介导的直接相互作用或通过可溶性因子或中间细胞的间接相互作用23,24

例如,神经元分泌的各种神经递质可以调节小胶质细胞的神经保护或炎症活性 25,26,27。此外,神经元和小胶质细胞之间的直接相互作用有助于将小胶质细胞维持在稳态28。相反,小胶质细胞与神经元的直接相互作用可以塑造神经元回路29 并影响神经元信号转导 30,31,32。由于这些相互作用的破坏会诱导神经元的过度兴奋30 和小胶质细胞反应性33,34调的小胶质细胞-神经元相互作用被认为是神经系统疾病的一个促成因素33,35。事实上,精神病23,26 和神经退行性疾病已被描述为表现出功能失调的小胶质细胞-神经元相互作用33。虽然这些观察结果强调了小胶质细胞-神经元通讯在 CNS 中的重要性,但这些相互作用如何调节健康和疾病中小胶质细胞和神经元功能的具体机制相对未知。

在 CNS 等复杂环境中,多种环境因素会影响小胶质细胞-神经元相互作用,从而限制了研究 体内瞬时细胞相互作用的能力。在这里,我们提出了一种 体外 小胶质细胞-神经元共培养系统,可用于研究小胶质细胞和神经元之间的直接细胞相互作用。该方案分别描述了出生后第 0-2 天和胚胎小鼠第 16-18 天之间从新生小鼠皮层产生原代小胶质细胞和神经元。然后将神经元和小胶质细胞在 96 孔板中共培养,用于下游高通量实验。我们之前使用这种方法来证明小胶质细胞吞噬作用保护神经元免受氧化磷脂酰胆碱介导的细胞死亡37,这表明这种方法可以帮助理解小胶质细胞在神经变性和 MS 中的作用。同样,小胶质细胞-神经元共培养也可能有助于研究小胶质细胞-神经元串扰在其他情况下的影响,例如病毒感染38 或神经元损伤和修复39。总体而言, 体外小 胶质细胞-神经元共培养系统使研究人员能够在可操作和受控的环境中研究小胶质细胞-神经元相互作用,这与 体内 模型相辅相成

Protocol

本研究中使用的所有动物均经萨斯喀彻温大学动物护理委员会 (UACC) 和加拿大动物护理委员会 (CCAC) 批准进行饲养和处理。本研究使用怀孕 CD1 小鼠出生后 0-2 天 CD1 雄性和雌性小鼠以及胚胎第 16-18 天 (E16-18) 胚胎。材料 表中列出了试剂和所用设备的详细信息。 1. 原代小胶质细胞培养 注意:对混合?…

Representative Results

图 1A 显示了小胶质细胞混合胶质细胞培养关键步骤的流程图。总体而言,预计第 1 天会出现稀疏的细胞和过多的细胞碎片(图 1B)。到第 4 天,应观察到细胞数量增加,尤其是贴壁星形胶质细胞的产生,如其细长的形态所示(图 1C)。可以在星形胶质细胞顶部观察到一些小胶质细胞,或者作为漂浮在培?…

Discussion

本文介绍了一种分离和培养小鼠原代神经元和原代小胶质细胞的方案,随后用于建立小胶质细胞-神经元共培养物,可用于研究小胶质细胞和神经元相互作用如何调节其细胞健康和功能。这种相对简单易行的方法可以为 CNS 中小胶质细胞神经元相互作用的机制和功能结果提供关键见解。

为了实现最佳的共培养,该方案中的几个关键方面需要格外小心。?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

JP 感谢加拿大自然科学与工程研究委员会和萨斯喀彻温大学医学院的资金支持。YD 感谢萨斯喀彻温大学医学院启动基金、加拿大自然科学与工程研究委员会发现补助金 (RGPIN-2023-03659)、MS Canada 催化剂补助金 (1019973)、萨斯喀彻温省健康研究基金会建立补助金 (6368) 和 Brain Canada Foundation 加拿大脑研究未来领袖补助金的资金支持。 图 1A图 2A图 3A 是使用 BioRender.com 创建的。

Materials

10 cm Petri dish  Fisher  07-202-011 Sterile
1x Versene Gibco 15040-066
B-27 Plus Neuronal Culture System  Gibco  A3653401
Dissection microscope VWR
DNase I Roche 11284932001
Dulbecco’s Modified Eagle Medium (DMEM) Gibco 11960-044
Fetal Bovine Serum  ThermoFisher Sci 12483-020
HBSS (10x) Gibco 14065-056
Hemacytometer Hausser Scientific 1475
HEPES  ThermoFisher Sci 15630080
Leibovitz’s L-15 Medium (1x) Fisher Scientific  21083027
Macrophage colony stimulating factor  Peprotech 315-02
Micro-Forceps RWD F11020-11 Autoclaved/Sterile
Non-essential amino acids Cytiva SH3023801
PBS (10x) ThermoFisher Sci AM9625
Penicillin Streptomycin Glutamine (100x) Gibco 103780-16
Poly-L-ornithine hydrobromide  Sigma P3655-100MG
Sodium pyruvate (100 mM) Gibco 11360-070
Spring scissors RWD S11008-42 Autoclaved/Sterile
Surgical blade Feather 08-916-5D Sterile
T-25 flasks Fisher 10-126-9
T-75 flasks  Fisher 13-680-65
Tissue forceps Codman 30-4218 Autoclaved/Sterile
Tissue scissors RWD S12052-10 Autoclaved/Sterile
Trypan Blue  Thermofisher Sci  15250-061
Trypsin (2.5%) ThermoFisher Sci 15090046
Widefield Immunofluorescence Microscope Zeiss

References

  1. Yin, J., Valin, K. L., Dixon, M. L., Leavenworth, J. W. The role of microglia and macrophages in CNS homeostasis, autoimmunity, and cancer. J Immunol Res. 2017, 1-12 (2017).
  2. Colonna, M., Butovsky, O. Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol. 35 (1), 441-468 (2017).
  3. Ginhoux, F., Prinz, M. Origin of microglia: Current concepts and past controversies. Cold Spring Harb Perspect Biol. 7 (8), a020537 (2015).
  4. Dermitzakis, I., et al. Origin and emergence of microglia in the CNS-an interesting (hi)story of an eccentric cell. Curr Issues Mol Biol. 45 (3), 2609-2628 (2023).
  5. Ransohoff, R. M., Cardona, A. E. The myeloid cells of the central nervous system parenchyma. Nature. 468 (7321), 253-262 (2010).
  6. Ginhoux, F., et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 330 (6005), 841-845 (2010).
  7. Askew, K., et al. Coupled proliferation and apoptosis maintain the rapid turnover of microglia in the adult brain. Cell Rep. 18 (2), 391-405 (2017).
  8. Vidal-Itriago, A., et al. Microglia morphophysiological diversity and its implications for the CNS. Front Immunol. 13, 997786 (2022).
  9. Wendimu, M. Y., Hooks, S. B. Microglia phenotypes in aging and neurodegenerative diseases. Cells. 11 (13), 2091 (2022).
  10. Hanisch, U. K., Kettenmann, H. Microglia: Active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci. 10 (11), 1387-1394 (2007).
  11. Colonna, M., Butovsky, O. Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol. 35 (1), 441-468 (2017).
  12. Zhao, J. F., et al. Research progress on the role of microglia membrane proteins or receptors in neuroinflammation and degeneration. Front Cell Neurosci. 16, 831977 (2022).
  13. Yang, I., Han, S. J., Kaur, G., Crane, C., Parsa, A. T. The role of microglia in central nervous system immunity and glioma immunology. J Clin Neurosci. 17 (1), 6-10 (2010).
  14. Jurga, A. M., Paleczna, M., Kuter, K. Z. Overview of general and discriminating markers of differential microglia phenotypes. Front Cell Neurosci. 14, 198 (2020).
  15. Doens, D., Fernández, P. L. Microglia receptors and their implications in the response to amyloid β for Alzheimer’s disease pathogenesis. J Neuroinflammation. 11 (1), 48 (2014).
  16. Block, M. L., Zecca, L., Hong, J. S. Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms. Nat Rev Neurosci. 8 (1), 57-69 (2007).
  17. Fischer, M. T., et al. NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury. Brain. 135 (3), 886-899 (2012).
  18. Marinelli, S., Basilico, B., Marrone, M. C., Ragozzino, D. Microglia-neuron crosstalk: Signaling mechanism and control of synaptic transmission. Semin Cell Dev Biol. 94, 138-151 (2019).
  19. Pocock, J. M., Kettenmann, H. Neurotransmitter receptors on microglia. Trends Neurosci. 30 (10), 527-535 (2007).
  20. Carniglia, L., et al. Neuropeptides and microglial activation in inflammation, pain, and neurodegenerative diseases. Mediators Inflamm. 2017, 5048616 (2017).
  21. Zhao, S., Umpierre, A. D., Wu, L. J. Tuning neural circuits and behaviors by microglia in the adult brain. Trends Neurosci. 47 (3), 181-194 (2024).
  22. Kettenmann, H., Kirchhoff, F., Verkhratsky, A. Microglia: New roles for the synaptic stripper. Neuron. 77 (1), 10-18 (2013).
  23. Haidar, M. A., et al. Crosstalk between microglia and neurons in neurotrauma: An overview of the underlying mechanisms. Curr Neuropharmacol. 20 (11), 2050-2065 (2022).
  24. Cserép, C., Pósfai, B., Dénes, &. #. 1. 9. 3. ;. Shaping neuronal fate: Functional heterogeneity of direct microglia-neuron interactions. Neuron. 109 (2), 222-240 (2021).
  25. Pocock, J. M., Kettenmann, H. Neurotransmitter receptors on microglia. Trends Neurosci. 30 (10), 527-535 (2007).
  26. Eyo, U. B., Wu, L. J. Bidirectional microglia-neuron communication in the healthy brain. Neural Plast. 2013, 456857 (2013).
  27. Strosznajder, J. B., Czapski, G. A. Glutamate and GABA in microglia-neuron cross-talk in Alzheimer’s disease. Int J Mol Sci. 22 (21), 11677 (2021).
  28. Lyons, A., et al. CD200 ligand-receptor interaction modulates microglial activation in vivo and in vitro A role for IL-4. J Neurosci. 27 (31), 8309-8313 (2007).
  29. Wake, H., Moorhouse, A. J., Miyamoto, A., Nabekura, J. Microglia: Actively surveying and shaping neuronal circuit structure and function. Trends Neurosci. 36 (4), 209-217 (2013).
  30. Merlini, M., et al. Microglial Gi-dependent dynamics regulate brain network hyperexcitability. Nat Neurosci. 24 (1), 19-23 (2021).
  31. Chen, Z., et al. Microglial displacement of inhibitory synapses provides neuroprotection in the adult brain. Nat Commun. 5 (1), 4486 (2014).
  32. Cantaut-Belarif, Y., et al. Microglia control the glycinergic but not the GABAergic synapses via prostaglandin E2 in the spinal cord. J Cell Biol. 216 (9), 2979-2989 (2017).
  33. Szepesi, Z., Manouchehrian, O., Bachiller, S., Deierborg, T. Bidirectional microglia-neuron communication in health and disease. Front Cell Neurosci. 12, 323 (2018).
  34. Chamera, K., Trojan, E., Szuster-Głuszczak, M., Basta-Kaim, A. The potential role of dysfunctions in neuron-microglia communication in the pathogenesis of brain disorders. Curr Neuropharmacol. 18 (5), 408-430 (2020).
  35. Gao, C., Jiang, J., Tan, Y., Chen, S. Microglia in neurodegenerative diseases: Mechanism and potential therapeutic targets. Signal Transduct Target Ther. 8 (1), 359 (2023).
  36. Brisch, R., et al. The role of microglia in neuropsychiatric disorders and suicide. Eur Arch Psychiatry Clin Neurosci. 272 (6), 929-945 (2022).
  37. Dong, Y., et al. Oxidized phosphatidylcholines found in multiple sclerosis lesions mediate neurodegeneration and are neutralized by microglia. Nat Neurosci. 24 (4), 489-503 (2021).
  38. Alvarez-Carbonell, D., et al. Cross-talk between microglia and neurons regulates HIV latency. PLoS Pathog. 15 (12), e1008249 (2019).
  39. Lorenzen, K., et al. Microglia induce neurogenic protein expression in primary cortical cells by stimulating PI3K/AKT intracellular signaling in vitro. Mol Biol Rep. 48 (1), 563-584 (2021).
  40. Güler, B. E., Krzysko, J., Wolfrum, U. Isolation and culturing of primary mouse astrocytes for the analysis of focal adhesion dynamics. STAR Protoc. 2 (4), 100954 (2021).
  41. Tomassoni-Ardori, F., Hong, Z., Fulgenzi, G., Tessarollo, L. Generation of functional mouse hippocampal neurons. Bio Protoc. 10 (15), e3702 (2020).
  42. Viviani, B. Preparation and coculture of neurons and glial cells. Curr Protoc Cell Biol. Chapter 2 (Unit 2.7), (2006).
  43. Roqué, P. J., Costa, L. G. Co-culture of neurons and microglia. Curr Protoc Toxicol. 74, 11.24.1-11.24.17 (2017).
  44. Goshi, N., Morgan, R. K., Lein, P. J., Seker, E. A primary neural cell culture model to study neuron, astrocyte, and microglia interactions in neuroinflammation. J Neuroinflammation. 17 (1), 155 (2020).
  45. Carroll, J. A., Foliaki, S. T., Haigh, C. L. A 3D cell culture approach for studying neuroinflammation. J Neurosci Methods. 358, 109201 (2021).
  46. Baxter, P. S., et al. Microglial identity and inflammatory responses are controlled by the combined effects of neurons and astrocytes. Cell Rep. 34 (12), 108882 (2021).
  47. Luchena, C., et al. A neuron, microglia, and astrocyte triple co-culture model to study Alzheimer’s disease. Front Aging Neurosci. 14, 844534 (2022).
  48. Park, J., et al. A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer’s disease. Nat Neurosci. 21 (7), 941-951 (2018).
  49. Vahsen, B. F., et al. Human iPSC co-culture model to investigate the interaction between microglia and motor neurons. Sci Rep. 12 (1), 12606 (2022).
  50. Giacomelli, E., et al. Human stem cell models of neurodegeneration: from basic science of amyotrophic lateral sclerosis to clinical translation. Cell Stem Cell. 29 (1), 11-35 (2022).
  51. Yong, V. W. Microglia in multiple sclerosis: protectors turn destroyers. Neuron. 110 (21), 3534-3548 (2022).
  52. Kamma, E., Lasisi, W., Libner, C., Ng, H. S., Plemel, J. R. Central nervous system macrophages in progressive multiple sclerosis: relationship to neurodegeneration and therapeutics. J Neuroinflammation. 19 (1), 45 (2022).
  53. Dong, Y., Lozinski, B. M., Silva, C., Yong, V. W. Studying the microglia response to oxidized phosphatidylcholine in primary mouse neuron culture and mouse spinal cord. STAR Protoc. 2 (4), 100853 (2021).
  54. Anderson, S. R., et al. Neuronal apoptosis drives remodeling states of microglia and shifts in survival pathway dependence. eLife. 11, e76564 (2022).
  55. Harry, G. J., McPherson, C. A. Microglia: Neuroprotective and neurodestructive properties. Handbook of Neurotoxicity. , 109-132 (2014).
This article has been published
Video Coming Soon
Keep me updated:

.

Citer Cet Article
Park, J., Yu, R., Dong, Y. Generating and Co-culturing Murine Primary Microglia and Cortical Neurons. J. Vis. Exp. (209), e67078, doi:10.3791/67078 (2024).

View Video