Summary

Transfection d’un clone moléculaire de l’ADNr de Naegleria gruberi en trophozoïtes de N. gruberi

Published: June 21, 2024
doi:

Summary

Ce protocole décrit une méthodologie pour transfecter les trophozoïtes de Naegleria gruberi avec une construction qui est maintenue tout au long du passage des trophozoïtes in vitro, ainsi que par l’enkystement et l’exkystement.

Abstract

Tous les gènes ribosomiques de Naegleria trophozoites sont maintenus dans un élément contenant de l’ADN ribosomique extrachromosomique (ADNr) (CERE) circulaire et fermé. Bien que l’on sache peu de choses sur le CERE, une analyse complète de la séquence génomique de trois espèces de Naegleria démontre clairement qu’il n’y a pas de cistrons d’ADNr dans le génome nucléaire. De plus, une seule origine de réplication de l’ADN a été cartographiée chez N. gruberi CERE, soutenant l’hypothèse selon laquelle CERE se réplique indépendamment du génome nucléaire. Cette caractéristique de l’EREC suggère qu’il pourrait être possible d’utiliser l’ERE modifié pour introduire des protéines étrangères dans Naegleria trophozoites. Comme première étape dans l’exploration de l’utilisation d’un CERE comme vecteur chez Naegleria, nous avons développé un protocole pour transfecter N. gruberi avec un clone moléculaire du CERE de N. gruberi cloné en pGEM7zf+ (pGRUB). Après la transfection, pGRUB a été facilement détecté dans les trophozoïtes de N. gruberi pendant au moins sept passages, ainsi que par enkystement et exkystique. Comme contrôle, les trophozoïtes ont été transfectés avec le vecteur squelette, pGEM7zf+, sans les séquences de N. gruberi (pGEM). Le pGEM n’a pas été détecté après le premier passage suivant la transfection dans N. gruberi, ce qui indique son incapacité à se répliquer dans un organisme eucaryote. Ces études décrivent un protocole de transfection pour les trophozoïtes de Naegleria et démontrent que la séquence plasmidique bactérienne dans pGRUB n’inhibe pas la transfection et la réplication réussies du clone CERE transfecté. De plus, ce protocole de transfection sera essentiel pour comprendre la séquence minimale du CERE qui pilote sa réplication dans les trophozoïtes, ainsi que pour identifier les régions régulatrices dans la séquence non ribosomique (NRS).

Introduction

Le genre Naegleria contient plus de 45 espèces, bien qu’il soit peu probable que tous les membres de l’espèce aient été identifiés1. Naegleria peut exister sous différentes formes : sous forme de trophozoïtes (amibes), de flagellés ou, lorsque les ressources sont sévèrement limitées, sous forme de kystes 1,2,3,4. Le genre Naegleria est reconnu pour sa seule espèce particulièrement dangereuse, Naegleria fowleri, connue sous le nom d’«amibe mangeuse de cerveau » (examinée dans 1,2,3,4,5,6,7), qui est la cause de la méningo-encéphalite amibienne primaire presque universellement mortelle.

Naegleria code leur ADNr sur le CERE situé dans le nucléole. Le séquençage complet des génomes de trois espèces de Naegleria confirme l’absence d’ADNr dans le génome nucléaire 8,9,10,11. D’après les séquences CERE complètes limitées, la CERE varie d’environ 10 kbp à 18 kbp de longueur. Les CERE de chaque espèce de Naegleria portent un seul cistron d’ADNr (contenant l’ADN ribosomique 5.8, 18 et 28S) sur chacune des 4 000 CERE par cellule 12,13,14. Outre l’ADNr, chaque CERE possède une grande séquence non ADNr (NRS). La taille des CERE varie d’une espèce à l’autre ; les différences sont principalement dues à la longueur variable du NRS, car les séquences d’ADNr sont hautement conservées dans le genre 1,15,16,17,18,19,20. La cartographie d’une origine unique de réplication de l’ADN au sein de N. gruberi CERE NRS21 fournit un soutien solide à l’hypothèse selon laquelle Naegleria CERE se réplique indépendamment du génome nucléaire.

N. gruberi est une amibe non pathogène souvent utilisée pour étudier la biologie de Naegleria . Nous avons développé une méthodologie pour transformer les trophozoïtes de N. gruberi avec un clone de CERE de la même espèce afin de tester l’hypothèse selon laquelle les amibes Naegleria tolèrent et répliquent indépendamment les CERE au sein des trophozoites. Cela a été accompli en transformant N. gruberi avec un clone complet de N. gruberi CERE en trophozoïtes et en suivant le destin du clone CERE donneur par réaction en chaîne par polymérase (PCR). La figure 1 donne un aperçu général du protocole. Les données présentées ici démontrent que le clone donneur peut être détecté par au moins sept passages en culture tissulaire, ainsi que par l’enkystement et l’exkystement. Ces études constituent la base d’un moyen de disséquer la réplication de CERE, ainsi que d’explorer son utilisation comme vecteur de transfection de Naegleria.

Protocol

Les détails des espèces, des réactifs et de l’équipement utilisés dans cette étude sont répertoriés dans la table des matériaux. La séquence de la construction pGRUB de 17 004 paires de bases est fournie dans le fichier supplémentaire 1. 1. Cultiver des trophozoïtes Décongeler les trophozoïtes de N. gruberi congelés à 37 °C pendant 3 min. Inoculer des trophozoïtes dans des flacons T25 dans de la…

Representative Results

La PCR des trophozoïtes qui ont été transfectés avec pGRUB démontre que le CERE transfecté est détecté par au moins sept passages des trophozoïtes, ainsi que par l’enkystement et l’exkyste (Figure 4). Les amorces utilisées dans le recuit de la PCR s’appliquent à la fois au vecteur pGEM et à la séquence CERE, garantissant ainsi que la PCR ne détecte pas les CERE natifs. La PCR après transfection du pGEM en trophozoïtes a indiqué que le pGEM était négatif (<strong clas…

Discussion

Le protocole décrit ici est très simple, bien que chaque construction nécessitera probablement un certain degré d’optimisation, en particulier du rapport ADN-réactif de transfection, en fonction de la nature de la construction et de l’espèce de Naegleria utilisée. Nous n’avons testé qu’un seul réactif de transfection disponible dans le commerce en utilisant ce protocole, mais il est probable que plusieurs autres puissent être efficaces. Étant donné qu’un clone complet de la CERE est utilis?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Ces études ont été partiellement financées par une subvention du Fonds George F. Haddix de l’Université Creighton (KMD). La figure 1 est générée dans biorender.com et la figure 3 est générée dans benchling.com.

Materials

Agarose Bio Rad 161-3102
Ammonium Acetate Sigma Aldrich A-7330
Calcium Chloride Sigma Aldrich C-4901
Crushed ice
Culture Flasks, T-75 Thermo Scientific 130190
Culture Plate, 6-well Corning 3506
DNAse Sigma Aldrich D-4527
EDTA, 0.5 M Affymetrix 15694
Electropheresis Gel Apparatus Amersham Biosciences 80-6052-45
Eppendorf Tubes, 1.5 mL Fisher Scientific 05-408-129
Eppendorf Tubes, 2 mL Fisher Scientific 05-408-138
Ethanol, 100% Decon Laboratories 2716
Ethidium Bromide Sigma Aldrich E-8751
Fetal Bovine Serum Gibco 26140
Folic Acid Sigma Aldrich F7876-25G
GeneRuler 1 kb Plus Ladder Thermo Scientific SM1331
Glacial Acetic Acid Fisher Scientific UN2789
GoTaq Green PCR Master Mix Promega M7122
Heating Block Thermo Scientific 88871001
Hemacytometer Hausser Scientific 1483
Hemin Sigma Aldrich 51280
Iron Chloride Sigma Aldrich 372870-256
Ligase NEB M2200S
Magneisum Chloride Fisher Scientific M33-500
Microfuge Thermo Scientific MySpin 12
Microscope Nikon TMS
N. gruberi ATCC 30224
Nucleic Acid Chem Impex Int’l #01625
Peptone Gibco 211677
pGEM Promega P2251
Potassium Phosphate Sigma Aldrich P0662-500G
PowerPac HC Electropharesis Power Supply Unit Bio Rad 1645052
Sodium Chloride MCB Reagents SX0420
Sodium Phosphate, dibasic Sigma Aldrich S2554
Tabletop Centrifuge eppendorf 5415R
Tris, base Sigma Aldrich T1503-1KG
Trypan Blue, 0.4% Gibco 15250-061
ViaFect Reagent Promega E4981
Weigh Scale Denver Instruments APX-60
Yeast Extract Gibco 212750

References

  1. De Jonckheere, J. F. What do we know by now about the genus Naegleria. Exp Parasitol. 145 (Suppl), S2-S9 (2014).
  2. De Jonckheere, J. F. A century of research on the Amoeboflagellate genus Naegleria. Acta Protozool. 41, 309-342 (2002).
  3. Fulton, C. Cell differentiation in Naegleria gruberi. Annu Rev Microbiol. 31, 597-629 (1977).
  4. Grace, E., Asbill, S., Virga, K. Naegleria fowleri: Pathogenesis, diagnosis, and treatment options. AAC. 59 (11), 6677-6681 (2015).
  5. Moseman, E. A. Battling brain-eating amoeba: enigmas surrounding immunity to Naegleria fowleri. PLOS Pathog. 16 (4), e1008406 (2020).
  6. Marciano-Cabral, F. Biology of Naegleria spp. Microbiol Rev. 52 (1), 114-133 (1988).
  7. Piñero, J. E., Omaña-Molina, M., Chávez-Munguía, B., Lorenzo-Morales, J. Naegleria fowleri. Trends Parasitol. 35 (10), 848-849 (2019).
  8. Zysset-Burri, D. C., et al. Genome-wide identification of pathogenicity factors of the free-living amoeba Naegleria fowleri. BMC Genomics. 15, 496-510 (2014).
  9. Liechti, N., Schürch, N., Bruggmann, R., Wittwer, M. The genome of Naegleria lovaniensis, the basis for a comparative approach to unravel pathogenicity factors of the human pathogenic amoeba N. fowleri. BMC Genom. 19, 654-665 (2018).
  10. Liechti, N., Schürch, N., Bruggmann, R., Wittwer, M. Nanopore sequencing improves the draft genome of the human pathogenic amoeba Naegleria fowleri. Sci Reports. 9, 16040-16049 (2019).
  11. Fritz-Laylin, L. K., Ginger, M. L., Walsh, C., Dawson, S. C., Fulton, C. The Naegleria genome: A free-living microbial eukaryote lends unique insights into core eukaryotic cell biology. Res Microbiol. 162, 607-618 (2011).
  12. Clark, C. G., Cross, G. A. M. rRNA genes of Naegleria gruberi are carried exclusively on a 14-kilobase-pair plasmid. Mol Cell Biol. 7 (9), 3027-3031 (1987).
  13. Clark, C. G., Cross, G. A. M. Circular ribosomal RNA genes are a general feature of schizopyrenid amoebae. J Protozool. 35 (2), 326-329 (1988).
  14. Dao, F. Y., et al. Identify origin of replication in Saccharomyces cerevisiae using two-step feature selection technique. Bioinformatics. 35 (12), 2075-2083 (2019).
  15. Mullican, J. C., Chapman, N. M., Tracy, S. Complete genome sequence of the circular extrachromosomal element of Naegleria gruberi strain EGB ribosomal DNA. Genome Announc. 6 (6), e00020-e00021 (2018).
  16. Mullican, J. C., Drescher, K. M., Chapman, N. M., Tracy, S. Complete genome sequence of the Naegleria fowleri (strain LEE) closed circular extrachromosomal ribosomal DNA element. Microbiol Resource Announce. 9 (49), e01055-e01020 (2020).
  17. Nguyen, B. T., Chapman, N. M., Tracy, S., Drescher, K. M. The extrachromosomal elements of the Naegleria amoebae: How little we know. Plasmid. 115, 102567 (2021).
  18. Nguyen, B. T., et al. Complete sequence of the closed circular extrachromosomal element (CERE) of Naegleria australiensis De Jonckheere (strain PP 397). Microbiol Resource Announce. 12, e0032123 (2023).
  19. Nguyen, B. T., Chapman, N. M., Stessman, H. A. F., Tracy, S., Drescher, K. M. Complete sequence of the closed circular extrachromosomal element of Naegleria jadini Willaert and Ray (Strain ITMAP400). Microbiol Resource Announce. 12 (4), e0006123 (2023).
  20. Nguyen, B. T., et al. Complete sequence of the closed circular extrachromosomal element (CERE) of Naegleria pringsheimi De Jonckheere (strain Singh). Microbiol Resource Announce. 13 (4), (2024).
  21. Mullican, J. C., Chapman, N. M., Tracy, S. Mapping the single origin of replication in the Naegleria gruberi extrachromosomal DNA element. Protist. 170, 141-152 (2019).
  22. Sohn, H. J., et al. Efficient liquid media for encystation of pathogenic free-living amoebae. Korean J Parasitol. 55 (3), 233-238 (2017).
  23. Strober, W. Trypan blue exclusion test of cell viability. Curr Protoc Immunol. 111, A3.B.1-A3.B.3 (2001).
  24. Lorenz, T. C. Polymerase Chain Reaction: Basic protocol plus troubleshooting and optimization strategies. J Vis Exp. 63, e3998 (2012).
  25. Jeong, S. R., et al. Expression of the nfa1 gene cloned from pathogenic Naegleria fowleri in non-pathogenic N. gruberi enhances cytotoxicity against CHO target cells in vitro. Infect Immun. 73 (7), 4098-4105 (2005).
  26. Clark, C. G., Cross, G. A. M., De Jonckheere, J. F. Evaluation of evolutionary divergence in the genus Naegleria by analysis of ribosomal DNA plasmid restriction patterns. Mol Biochem Parasitol. 34 (3), 281-296 (1989).
  27. De Jonckheere, J. F. Sequence variation in the ribosomal internal transcribed spacers, including the 5.8S rDNA, of Naegleria spp. Protist. 149 (3), 221-228 (1998).
  28. Rawal, P., et al. Genome-wide prediction of G4 DNA as regulatory motifs: Role in Escherichia coli global regulation. Genome Res. 16 (5), 644-655 (2006).
  29. Yadav, V. K., Abraham, J. K., Mani, P., Kulshrestha, R., Chowdhury, S. QuadBase: Genome-wide database of G4 DNA – occurrence and conservation in human, chimpanzee, mouse and rat promoters and 146 microbes. Nucleic Acids Res. 36, D381-D385 (2007).

Play Video

Citer Cet Article
Nguyen, B. T., Chapman, N. M., Mullican, J. C., Drescher, K. M. Transfection of a Molecular Clone of Naegleria gruberi rDNA into N. gruberi Trophozoites. J. Vis. Exp. (208), e66726, doi:10.3791/66726 (2024).

View Video