Summary

胚胎小鼠脑切片中迁移神经元和神经胶质祖细胞的延时成像

Published: March 08, 2024
doi:

Summary

在大脑皮层的发育过程中,神经元和神经胶质细胞起源于脑室内壁的心室区,并向大脑表面迁移。这个过程涉及许多基因。该协议介绍了迁移神经元和神经胶质祖细胞的延时成像技术。

Abstract

在大脑皮层的发育过程中,神经元和神经胶质细胞起源于脑室内壁的心室区,并向大脑表面迁移。这个过程对于正常的大脑功能至关重要,其失调会导致出生后出现神经发育和精神疾病。事实上,已经发现许多导致这些疾病的基因参与了这一过程,因此,揭示这些突变如何影响细胞动力学对于了解这些疾病的发病机制非常重要。该协议引入了一种对从小鼠胚胎获得的脑切片中迁移的神经元和神经胶质祖细胞进行延时成像的技术。使用 宫内 电穿孔用荧光蛋白标记细胞,该电穿孔以高信噪比可视化从心室区迁移的单个细胞。此外,这种 体内基因 转移系统使我们能够通过共电穿孔给定基因的表达或敲低/敲除载体,轻松地对给定基因进行功能获得或功能丧失实验。使用该协议,可以分析单个细胞的迁移行为和迁移速度,这些信息从未从固定大脑中获得。

Introduction

在大脑皮层的发育过程中,侧脑室内衬的肺源脑室区 (VZ) 的(顶端)桡状胶质细胞首先产生神经元,然后产生神经胶质祖细胞,并有一些重叠的周期1。神经元也来自与 VZ 相邻的脑室下区 (SVZ) 的中间祖细胞或基底放射状胶质细胞,两者都起源于(顶端)放射状胶质细胞 2,3。在小鼠中,放射状神经胶质细胞仅在胚胎日 (E) 12-14 产生神经元,在 E15-16 上产生神经元和神经胶质祖细胞,从 E17 开始产生神经胶质祖细胞4。在这些胚胎阶段产生的神经胶质祖细胞的主要群体优先分化为星形胶质细胞,尽管有些细胞也分化为少突胶质细胞5。在这些阶段产生的神经元和星形胶质细胞祖细胞向大脑表面迁移并进入皮质板(未来的皮质灰质)。神经元从 VZ 到皮质板的迁移分多个阶段进行。神经元首先在多极细胞积累区 (MAZ) 上方采用多极形态,与 SVZ 或中间区重叠,在那里它们大力伸展和缩回多个薄突并缓慢迁移(多极迁移)6,7。大约 24 小时后,神经元转变为双极形态,向脑表面延伸一个厚的引导过程和一个向后延伸的薄拖突,并使用从放射状胶质细胞延伸到软脑膜表面的放射状过程作为支架向大脑表面线性迁移,这称为运动模式 2,8.因为处于运动模式的神经元总是到达皮质板的最外表面,穿过边缘区下方的前身,所以神经元在皮质板中以依赖于出生日期的由内而外的方式排列 9,10,11

相比之下,星形胶质细胞祖细胞迅速迁移到中间区和皮质板,方向频繁改变。这种迁移行为与神经元迁移完全不同,称为不稳定迁移5 (erratric migration)。星形胶质细胞祖细胞也沿血管迁移,这个过程称为血管引导迁移。星形胶质细胞祖细胞在这些迁移模式之间切换并到达皮质板 5,12。虽然星形胶质细胞的位置并不严格由其产生日期决定,但已经观察到早产星形胶质细胞在皮质板浅表部分沉淀的轻微趋势5。有趣的是,定居在皮质板中的星形胶质细胞是在胚胎阶段产生的,最终分化为原生质星形胶质细胞,而出生后产生的星形胶质细胞不会主动迁移,而是留在白质中,并分化为纤维状星形胶质细胞5。星形胶质细胞亚型的这种阶段依赖性特征是如何发生的尚不清楚。

已经鉴定出越来越多的参与神经元迁移的基因,包括那些与神经发育和精神疾病有关的基因13,14。因此,阐明这些基因突变对迁移神经元行为的影响至关重要。如前所述,神经元迁移发生在多个阶段。延时观察可以直接确定主要受影响的阶段(细胞周期退出、多极-双极转变、运动迁移速度等)。然而,星形胶质细胞的规格、迁移和定位的分子机制在很大程度上仍然未知。鉴于星形胶质细胞在大脑发育过程中的突触发生15 和血脑屏障形成16 中起着至关重要的作用,星形胶质细胞的发育缺陷可能导致神经发育障碍。对星形胶质细胞祖细胞的延时研究可能会阐明这些分子机制及其与精神疾病的关系。

该协议提供了一种对皮质 VZ 衍生细胞进行延时观察的方法。用于观察神经元迁移的类似视频方案已经发布17。在这里,我们描述了迁移神经元和星形胶质细胞祖细胞的方法。为了用荧光蛋白标记这些细胞,例如绿色和红色荧光蛋白(GFP 和 RFP),通过在适当的阶段通过宫内电穿孔将含有适当成分的质粒混合物引入皮质 VZ 18,19,20,21。在所需阶段取出纵的胚胎,并使用激光扫描显微镜将大脑切片并用于延时观察。使用这种方法可以检查迁移速度、方向和其他行为,这些行为从未使用固定大脑样本解决。在子宫内使用电穿孔、表达和敲低/敲除载体可以很容易地与荧光蛋白载体一起转移,使我们能够对特定基因进行功能获得和功能丧失研究。

Protocol

本研究是在发育研究所、爱知发育障碍中心 (#2019-013) 和庆应义塾大学 (A2021-030) 动物护理和使用委员会的批准并遵循其指导方针进行的。定时怀孕 ICR(野生型)小鼠是市售的(参见 材料表)。为了观察迁移细胞与血管之间的关系,使用了 Flt1-DsRed 小鼠,其中内皮细胞表达 DsRed22。雄性 Flt1-DsRed 小鼠与雌性 ICR 小鼠杂交 (两只小鼠都在 8-24 周龄)。所有动物均在…

Representative Results

肺病 VZ 中的放射状神经胶质细胞只产生 E14 之前的神经元,以及 E15 和 E16 的神经元和神经胶质细胞。为了同时观察神经元和神经胶质细胞的迁移行为,我们使用神经元特异性启动子 Tα1 启动子27 和人神经胶质纤维酸性蛋白 (hGFAP) 启动子28 分别用增强的 GFP (EGFP) 和 RFP 标记它们,它在星形胶质细胞中优先激活。星形胶质细胞祖细胞在迁移过程中重复?…

Discussion

该协议引入了一种对源自 pallial(皮层)VZ 的细胞进行延时观察的方法。为了标记来自 VZ 的迁移细胞,我们使用 了子宫 电穿孔,其中单个细胞被清楚地标记为比病毒载体介导的标记更高的信噪比。使用 宫内 电穿孔,可以很容易地将任何组合的任何类型的载体引入活胚胎的放射状神经胶质细胞(神经干细胞)。神经元和神经胶质祖细胞可以使用不同的启动子选择性标记。由于 子?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Tα1 发起人是 P. Barker 和 F.D. Miller 的礼物。Dcx promoter 是 Q. Lu 的礼物。hGFAP-Cre 是 Albee Messing 送给他的礼物。PiggyBac 转座子载体系统由 Sanger 研究所提供。Flt1-DsRed 小鼠由 M. Ema (滋贺大学) 提供。这项工作得到了 JSPS KAKENHI(H. Tabata 的 JP21K07309 号资助,K. Nakajima 的 JP20H05688 和 JP22K19365)和武田科学基金会、Keio Gijuku Fukuzawa 教育与研究促进纪念基金、K. Nakajima 的 Keio Gijuku 学术发展基金。

Materials

Aspirator tube assembly Drummond 2-040-000
Atipamezole (5 mg/mL) Meiji Mepatia
Autoclip Becton Dickinson 427630 9 mm
B27 supplement Gibco 17504-044
Butorphanol (5 mg/mL) Meiji Vetorphale
Cell culture insert Millipore PICM ORG 50
Confocal microscope Nikon A1RHD25 Equipped with a long working distance lens (S Plan Fluor ELWD 20XC)
Cryomold Tissue-Tek 4566
Culture chamber Tokken TK-NBCMP Custom-made
Electroporator NEPA Gene NEPA21
Fast Green Sigma-Aldrich F7258
Gas mixer Tokken TK-MIGM01-02
Glass base dish Iwaki 3910-035 Diameter of glass base is 27 mm
Glass capillaries Narishige GD-1
HBS (2x) Sigma-Aldrich 51558
HBSS(-) Wako 084-08345
Heater Unit Tokken TK-0003HU20 Custom-made, including hood and heater
hGFAP-Cre Addgene #40591 A gift from Albee Messing
ImageJ https://imagej.net/ij/
L-glutamine (200 mM) Gibco 25030
Low melting temperature agarose Lonza 50100
Medetomidine (1 mg/mL) Meiji Medetomin
Microinjector Narishige IM-300
Midazolam (5 mg/mL) Sandoz Midazolam
MTrackJ https://imagescience.org/meijering/software/mtrackj/
Neurobasal medium Gibco 21103-049
pCAG-hyPBase The hyPBase cDNA from pCMV-hyPBase (a gift from Sanger Institute) was inserted into the downstream of the CAG promoter of pCAGGS (a gift from J. Miyazaki).
pDcx-Dre The Dcx promoter from Dcx4kbEGFP70 (a gift from Q. Lu) was exchanged with CAG promoter of pCAG-NLS-HA-Dre34 (a gift from Pawel Pelczar, Addgene #51272).
Penicillin + Streptomycin Gibco 15140122
Plasmid purification kit Invitrogen PureLink HiPure plasmid midiprep kit (K210005)
pPB-CAG-LNL-RFP CAG-LNL cassette from pCALNL-DsRed (a gift from Connie Cepko, Addgene #13769), and TurboRFP cDNA (Evrogen, FP232) were inserted into the cloning site of pPB-CAG.EBNXN (a gift from Sanger Institute).
pPB-CAG-rDIO-EGFP The sequence containning synthetic rox sites, synthetic DIO cassette, and EGFP cDNA from pEGFP-N1 (Clontech, U55762) in reverse direction  were inserted into the cloning site of pPB-CAG.EBNXN (a gift from Sanger Institute). The sequence is provided in the Supplementary File.
Puller Narishige PN-31
StackRed a plugin for ImageJ http://bigwww.epfl.ch/thevenaz/stackreg/
Suture needle Nazme C-24-521-R No.1 1/2 circle, length 14 mm
Suture thread Nazme C-23-B2 Silk, size 5-0
Timed pregnant ICR (wild-type) mice Japan SLC ICR mouse
TrackMate https://imagej.net/plugins/trackmate/index
Tweezer-type electrode BEX or NEPA Gene CUY650P5 
Tα1-EGFP EGFP cDNA from pEGFP-N1 (Clontech, U55762) was inserted into the downstream of the Tα1 promoter in plasmid 253 (a gift from P. Barker and F.D.Miller)
Vibrating microtome Leica or Zeiss Vibrating blade microtome VT1000S or Hyrax V50.

References

  1. Kriegstein, A., Alvarez-Buylla, A. The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci. 32 (1), 149-184 (2009).
  2. Noctor, S. C., Martínez-Cerdeño, V., Ivic, L., Kriegstein, A. R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci. 7 (2), 136-144 (2004).
  3. Haubensak, W., Attardo, A., Denk, W., Huttner, W. B. Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: A major site of neurogenesis. P Natl Acad Sci USA. 101 (9), 3196-3201 (2004).
  4. Yoshida, A., Yamaguchi, Y., Nonomura, K., Kawakami, K., Takahashi, Y., Miura, M. Simultaneous expression of different transgenes in neurons and glia by combining in utero electroporation with the Tol2 transposon-mediated gene transfer system. Genes Cells. 15 (5), 501-512 (2010).
  5. Tabata, H., et al. Erratic and blood vessel-guided migration of astrocyte progenitors in the cerebral cortex. Nat Commun. 13 (1), 6571 (2022).
  6. Tabata, H., Nakajima, K. Multipolar Migration: The third mode of radial neuronal migration in the developing cerebral cortex. J Neurosci. 23 (31), 9996-10001 (2003).
  7. Tabata, H., Kanatani, S., Nakajima, K. Differences of migratory behavior between direct progeny of apical progenitors and basal progenitors in the developing cerebral cortex. Cereb Cortex. 19 (9), 2092-2105 (2009).
  8. Rakic, P. Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol. 145 (1), 61-83 (1972).
  9. Sekine, K., Honda, T., Kawauchi, T., Kubo, K., Nakajima, K. The outermost region of the developing cortical plate is crucial for both the switch of the radial migration mode and the Dab1-dependent "inside-out" lamination in the neocortex. J Neurosci. 31 (25), 9426-9439 (2011).
  10. Shin, M., et al. Both excitatory and inhibitory neurons transiently form clusters at the outermost region of the developing mammalian cerebral neocortex. J Comp Neurol. 527 (10), 1577-1597 (2019).
  11. Sekine, K., et al. Reelin controls neuronal positioning by promoting cell-matrix adhesion via inside-out activation of integrin α5β1. Neuron. 76 (2), 353-369 (2012).
  12. Morimoto, K., Tabata, H., Takahashi, R., Nakajima, K. Interactions between neural cells and blood vessels in central nervous system development. BioEssays. 230091, (2023).
  13. Tabata, H., Nagata, K. Decoding the molecular mechanisms of neuronal migration using in utero electroporation. Med Mol Morphol. 49 (2), 63-75 (2016).
  14. Ishii, K., Kubo, K., Nakajima, K. Reelin and neuropsychiatric disorders. Front Cell Neurosci. 10, 229 (2016).
  15. Bosworth, A. P., Allen, N. J. The diverse actions of astrocytes during synaptic development. Curr Opin Neurobiol. 47, 38-43 (2017).
  16. Tabata, H. Crosstalk between blood vessels and glia during the central nervous system development. Life. 12 (11), 1761 (2022).
  17. Wiegreffe, C., Feldmann, S., Gaessler, S., Britsch, S. Time-lapse confocal imaging of migrating neurons in organotypic slice culture of embryonic mouse brain using in utero electroporation. J Vis Exp. (125), e55886 (2017).
  18. Saito, T., Nakatsuji, N. Efficient Gene Transfer into the Embryonic Mouse Brain Using in Vivo Electroporation. Dev Biol. 240 (1), 237-246 (2001).
  19. Tabata, H., Nakajima, K. Labeling embryonic mouse central nervous system cells by in utero electroporation. Dev Growth Differ. 50 (6), 507-511 (2008).
  20. Tabata, H., Nakajima, K. Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neurosciences. 103 (4), 865-872 (2001).
  21. Fukuchi-Shimogori, T. Neocortex patterning by the secreted signaling molecule FGF8. Science. 294 (5544), 1071-1074 (2001).
  22. Matsumoto, K., et al. Study of normal and pathological blood vessel morphogenesis in Flt1-tdsRed BAC Tg mice. Genesis. 50 (7), 561-571 (2012).
  23. Kawai, S., Takagi, Y., Kaneko, S., Kurosawa, T. Effect of three types of mixed anesthetic agents alternate to ketamine in mice. Exp Anim. 60 (5), 481-487 (2011).
  24. Meijering, E., Dzyubachyk, O., Smal, I. Methods for cell and particle tracking. Methods Enzymol. 504, 183-200 (2012).
  25. Ershov, D., et al. TrackMate 7: Integrating state-of-the-art segmentation algorithms into tracking pipelines. Nat Methods. 19 (7), 829-832 (2022).
  26. Tinevez, J. -. Y., et al. TrackMate: An open and extensible platform for single-particle tracking. Methods. 115, 80-90 (2017).
  27. Gloster, A., et al. The T alpha 1 alpha-tubulin promoter specifies gene expression as a function of neuronal growth and regeneration in transgenic mice. J Neurosci. 14 (12), 7319-7330 (1994).
  28. Zhuo, L., et al. hGFAP-cre transgenic mice for manipulation of glial and neuronal function in vivo. Genesis. 31 (2), 85-94 (2001).
  29. Yusa, K., Zhou, L., Li, M. A., Bradley, A., Craig, N. L. A hyperactive piggyBac transposase for mammalian applications. P Natl Acad Sci USA. 108 (4), 1531-1536 (2011).
  30. Chen, F., LoTurco, J. A method for stable transgenesis of radial glia lineage in rat neocortex by piggyBac mediated transposition. J Neurosci Meth. 207 (2), 172-180 (2012).
  31. Wang, X., Qiu, R., Tsark, W., Lu, Q. Rapid promoter analysis in developing mouse brain and genetic labeling of young neurons by doublecortin-DsRed-express. J Neurosci Res. 85 (16), 3567-3573 (2007).
  32. Sauer, B. DNA recombination with a heterospecific Cre homolog identified from comparison of the pac-c1 regions of P1-related phages. Nucleic Acids Res. 32 (20), 6086-6095 (2004).
  33. Hermann, M., et al. Binary recombinase systems for high-resolution conditional mutagenesis. Nucleic Acids Res. 42 (6), 3894-3907 (2014).
  34. Kanatani, S., et al. The COUP-TFII/Neuropilin-2 is a molecular switch steering diencephalon-derived GABAergic neurons in the developing mouse brain. P Natl Acad Sci USA. 112 (36), E4985-E4994 (2015).
  35. Yozu, M., Tabata, H., Nakajima, K. The caudal migratory stream: A novel migratory stream of interneurons derived from the caudal ganglionic eminence in the developing mouse forebrain. J Neurosci. 25 (31), 7268-7277 (2005).
  36. Kanatani, S., Yozu, M., Tabata, H., Nakajima, K. COUP-TFII is preferentially expressed in the caudal ganglionic eminence and is involved in the caudal migratory stream. J Neurosci. 28 (50), 13582-13591 (2008).
  37. Kitazawa, A., et al. Hippocampal pyramidal neurons switch from a multipolar migration mode to a novel "climbing" migration mode during development. J Neurosci. 34 (4), 1115-1126 (2014).

Play Video

Citer Cet Article
Tabata, H., Nagata, K., Nakajima, K. Time-Lapse Imaging of Migrating Neurons and Glial Progenitors in Embryonic Mouse Brain Slices. J. Vis. Exp. (205), e66631, doi:10.3791/66631 (2024).

View Video