Summary

从幼虫到幼虫阶段的无菌斑马鱼模型的生成、维持和鉴定

Published: April 12, 2024
doi:

Summary

该协议概述了获得无菌(GF)鱼胚胎并将其从幼虫维持到幼虫阶段的主要步骤,包括取样和检测其不育状态。使用GF模型处理感染对于理解微生物在宿主健康中的作用非常重要。

Abstract

斑马鱼因其与哺乳动物的基因组相似性、在相对干净的绒毛膜环境中发育的透明胚胎以及与啮齿动物模型相比幼虫发育极快,因此可以作为生长、免疫和肠道微生物群研究的宝贵模型。无菌(GF)斑马鱼(Danio rerio)对于评估污染物毒性和建立与微生物功能相关的类人疾病模型至关重要。与传统饲养(CR)模型(共同饲养的鱼类)相比,GF斑马鱼可以更准确地操纵宿主微生物群,有助于确定微生物与宿主之间的因果关系。因此,它们在促进我们对这些关系的理解方面发挥着关键作用。然而,由于免疫功能和营养吸收的限制,GF斑马鱼模型通常是在生命早期(从胚胎到幼虫)生成和研究的。本研究优化了早期GF斑马鱼模型的生成、维持和鉴定,无需摄食和长期使用GF食物(如 卤虫 、盐水虾)摄食。在整个过程中,每天进行采样和培养,并通过多次检测进行鉴定,包括平板和 16S rRNA 测序。记录GF斑马鱼的无菌率、存活率和发育指标,保证所生成模型的质量和数量。重要的是,这项研究提供了关于GF鱼的细菌分离和感染技术的详细信息,使得在GF食物支持下能够有效地创建从幼虫到幼鱼阶段的GF鱼模型。通过在生物医学研究中应用这些程序,科学家们可以更好地了解肠道细菌功能与宿主健康之间的关系。

Introduction

微生物群(即古细菌细菌真核菌和病毒)在维持宿主健康方面发挥着至关重要的作用,并通过在肠道屏障、上皮表面和个体粘蛋白功能内的共生相互作用影响生理和病理过程,从而促进各种疾病的发展 1,2,3.从婴儿期到少年期、成年期和衰老等不同生命阶段的微生物群组成,以及其在鼻孔、口腔、皮肤和肠道部位等不同部位的存在,是由不同的栖息地和环境动态塑造的4.生物体中的肠道菌群参与营养吸收、免疫反应、病原体入侵、代谢调节等 5,6.对患者的研究表明,肠道菌群的破坏与人类肥胖、睡眠障碍、抑郁症、炎症性肠病 (IBD)、神经退行性疾病(帕金森氏症、阿尔茨海默氏症)、衰老和各种癌症有关 7,8,9。此外,肠道微生物群和宿主之间的相互作用途径涉及炎症因子、神经递质、代谢物、肠道屏障和氧化应激,正如之前使用小鼠和鱼类模型的研究中观察到的那样10,11

最近,在临床和动物模型中,已经探索了多种与细菌相关的方法或疗法,包括潜在的益生菌和粪便微生物群移植 (FMT),用于治疗这些疾病。这些探索基于与微生物群-肠-脑/肝/肾轴、微生物群衍生产物和受体活性改变相关的发现12,13。然而,由于微生物群落的复杂性和生成强大的类人疾病模型的挑战,微生物群-宿主系统的发育、各种功能和机制仍未完全理解和识别。

为了解决这些问题,无菌(GF)动物模型在19世纪中叶被紧急提出,并在20世纪主要发展起来。随后的改进,包括抗生素处理和gnotobiotic模型,以及微生物检测和观察技术的进步,进一步完善了这些模型14,15,16。GF动物通过消除自身背景和避免环境微生物而产生,为探索微生物与其宿主之间的相互作用提供了一种极好的策略17。通过应用动物模型和精细的方案,研究人员成功地复制了在GF小鼠和鱼类患者中发现的相似微生物组成。此外,其他GF动物模型,如狗、鸡和猪,作为研究对象提供了多样化的选择18,19,20,21。这种方法使人们能够研究共生微生物组对各种疾病的潜在治疗效果,包括人类癌症免疫疗法16,18。GF模型为特定细菌在宿主内定植、迁移、繁殖和相互作用的特征和机制提供了更准确的见解。这为微生物群相关疾病的发生和发展提供了重要的新见解22,23。GF斑马鱼在微生物研究中的建立和应用的历史从2004年Rawls等人的报告和2006年Bates等人的报告发展到2017年Melancon等人的方案16,24,25。然而,成年或繁殖GF模型的可行性仍然是一个漫长的过程,伴随着可变的寿命、成功率和健康挑战。

在各种动物模型中,斑马鱼(Danio rerio)因其与人体器官和基因组学的有利相似性、发育周期短、繁殖力高和胚胎透明等优点,成为基础和生物医学研究的重要工具19,26。斑马鱼作为可靠的人类疾病模型,提供了体内生理和病理过程的视觉表示,提供了对宿主-微生物相互作用的吸引人特征的见解。值得注意的是,斑马鱼表现出独特的细胞谱系,可以对肠道生理学、微生物动力学、性腺和生殖发育、宿主免疫系统的成熟、行为和新陈代谢进行成像27。斑马鱼胚胎在保护性绒毛膜内发育,直到孵化,在受精后 3 天 (dpf) 成为幼虫。它们在 5 dpf 时积极寻找食物,并在受精后 (mpf) 3 个月左右达到性成熟 28。Rawls 等人 24 报道的首次成功的无菌 (GF) 斑马鱼表明,在卵黄吸收后用高压灭菌饲料喂养的幼虫表现出 8 dpf 的组织坏死和 20 dpf 时的总死亡。这表明了饮食的影响或在涉及长期(>7 dpf)GF鱼的实验中考虑外源性营养供应的重要性29。随后的研究改进了GF鱼的生成方案,采用了在不同鱼类模型中完善的无菌食品和方法16

然而,对 GF 斑马鱼模型的大多数研究都集中在早期生命阶段,涉及细菌感染在 5 dpf 下持续 24 小时至 48 小时,在实验结束时在 7 dpf 之前收集样本 25,30,31。人们普遍认为,包括人类和斑马鱼在内的生物体中的微生物群在生命开始时就被定植,并在生长和发育过程中形成。该成分在成虫阶段保持稳定,宿主体内微生物群的作用在整个生命过程中都至关重要,尤其是在衰老、神经退行性、代谢相关肥胖和肠道疾病方面3.因此,考虑到鱼类幼虫在早期生命中的免疫和生殖系统不成熟,来自存活时间较长的GF动物的观点可以深入了解微生物在宿主器官发育和功能中的作用机制。虽然斑马鱼肠道中的细菌菌株在以前的研究中已被分离和鉴定,为感染 GF 动物模型以选择益生菌或研究宿主中的细菌功能提供了潜力19,25 GF 鱼模型的生成和应用主要局限于早期生命阶段。这种局限性归因于复杂的生产过程、高昂的维护成本以及与食物和免疫力相关的问题,阻碍了旨在调查宿主中微生物群的发育和慢性影响的研究工作。

鱼类的存活率、行为、生长、成熟和整体健康状况,尤其是在无菌 (GF) 模型中,受到摄食方式的显着影响,包括从早期幼虫到幼鱼张口期间的营养摄入和吸收32,33。然而,GF鱼类养殖业面临的挑战之一是缺乏合适的不育日粮,这限制了维持幼鱼生长和存活的营养支持的有效性。考虑到GF鱼的发育防御机制和由于缺乏肠道微生物组而导致的消化能力薄弱,解决这个问题对于恢复GF鱼的生命至关重要。在食物方面,活盐水虾(卤虫属)是张口幼鱼到幼鱼最合适的食物。据观察,与用煮熟的蛋黄或其他天然和合成饵料喂养的鱼相比,用活盐水喂养的鱼表现出更高的生长率和成活率34。虽然GF鱼的早期生活模型可以在卵黄支持下生存,而GF幼虫模型可以通过无菌喂养来维持,但从幼虫到幼鱼并达到性成熟的长期模型仍然具有挑战性。此外,片状或粉状食物受到营养成分不均的限制,并可能影响水质。相比之下,活卤虫具有在盐水和淡水中都能存活、体型小、适合幼虫到成虫、易于配料和更高的孵化质量等优点35.在先前方法162430 的基础上,我们简化了复杂的处理过程,并通过建立易于孵育的 GF 活卤虫作为无菌食品,其持续时间比早期 GF 鱼更长,从而解决了饮食挑战。

本研究提出了一个优化的方案,涵盖 (1) 代、(2) 维持、(3) 确定不育率以及 (4) 维持和饲喂,以确保无菌 (GF) 斑马鱼从胚胎生长到幼虫和幼年阶段。研究结果为GF斑马鱼的孵化、存活、生长和不育提供了初步证据,并为GF 卤虫 属作为不育食品提供了重要指标。无菌活食模型生成和制备的详细步骤为构建和应用长期GF鱼模型以及 GF卤虫 属在微生物群-宿主相互作用研究中提供了重要的技术支持。该协议解决了GF鱼模型上的细菌分离,鉴定和感染,概述了细菌荧光标记的方法,并在显微镜下观察它们在鱼肠道中的定植。GF鱼、细菌感染的gnotobiotic鱼或转移的人类微生物群模型将进行各种检测,以阐明其功能和对宿主免疫、消化、行为、转录组调控和代谢方面的影响。从长远来看,该协议可以扩展到不同的野生型鱼类,例如海洋青鳉鱼,并可能扩展到与特定组织或疾病相关的其他选定的转基因斑马鱼品系。

Protocol

鱼类实验是按照重庆市动物护理和使用专业委员会和重庆医科大学动物护理和使用机构的指导原则以及国家质量技术监督局颁布的实验动物标准(批准号:GB14922-2001-GBT14927-2001)进行的。斑马鱼(Danio rerio,野生型,AB品系)来源于中国科学院水生生物研究所,并按照先前报道的程序在实验室中保存36。 1.成年斑马鱼的维护和胚胎采集 <p cl…

Representative Results

GF斑马鱼模型可以通过利用成对的斑马鱼产卵来有效地生产,并根据以前的GF鱼模型35优化了协议。单个 6 孔板可培养约 30-48 个胚胎/幼虫,可进行充足的数据收集和统计分析。无菌处理后,将GF胚胎在干净的培养箱中培养至48-72小时孵化为幼虫,并每天检测收集的样品以改变GZM,这对于保持无菌状态至关重要(图1)。7 dpf后,应为幼虫至幼虫阶段准备蛋黄和?…

Discussion

GF鱼类和GF食品制备协议中的关键步骤
在GF鱼模型的生成过程中,涉及几个关键步骤,包括无菌材料的制备、胚胎的灭菌、GZM的每日更新、各种样品的收集以及使用多种方法对每个样品进行无菌检查。在这些步骤中,胚胎的初始处理对于GF模型的成功是基础和决定性的。控制药剂、药剂浓度和处理时间对于实现最佳灭菌率和孵化成功率至关重要。在将GF鱼胚胎处理到幼虫时,需要特别…

Divulgations

The authors have nothing to disclose.

Acknowledgements

我们衷心感谢重庆医科大学人才项目(项目编号:R4014,项目编号:R4020)、国家自然科学基金项目(国家自然科学基金项目,编号:32200386)、重庆市博士后创新导师工作室(X7928 DSP)、中国科学院中斯水技术研究示范联合中心项目/中科院中斯联合教育研究中心等项目的支持。

Materials

AB-GZM Amphotericin:Solarbio;  kanamycin:Solarbio; Ampicillin:Solarbio. Amphotericin:CAS:1397-89-3;
kanamycin:CAS: 25380-94-0; Ampicillin:CAS: 69-52-313.
49.6 mL GZM, 50 µL amphotericin stock solution (250 µg/mL), 25 µL kanamycin stock solution (10 mg/mL), and 250 µL ampicillin stock solution (20 mg/mL).
1.5 mL, 15 mL, 50 mL EP tubes biosharp BS-15-M To collect samples, and hold agents
2.4 g/L NaClO XILONG SCIENTIFIC Co., Ltd. CAS: 7681-52-9 Diluted with 8% sodium hypochlorite aqueous solution.
6-well plates, 24-, 48- well plates LABSELECT  11112 To culture fish
Aeronomas NCBI database No.MK178499 2019-JPP-ESN
Anaerobic TSA plates tryptone:Oxoid ;
soy peptone:Solarbio ;NaCl:Biosharp;
agar powder:BioFroxx.
tryptone:LP0042B;
soy peptone:Cat#S9500;
NaCl:BS112;
agar powder:9002-18-0.
The TSA plates were prepared with 400 mL medium containing 6 g tryptone, 2 g soy peptone, 2 g NaCl, and 6 g agar powder under the anaerobic system.
Anaerobic work station GENE SCIENCE E200G Bacterial isolation, sterile testing
Analysis GraphPad Prism 5 v6.07 To analysis the data
API 20 E kits  BioMerieux SA, France No.1005915090 Ref 20100 Kits to detect bacterial metabolism
Artemia (Brine shrimp) Shangjia Aquarium Co., Ltd. Aquamaster brand Artemia cysts, and brine shrimp eggs 
Auto cycle system for fish culture Ningbo Hairui Technology Co., Ltd No Cat Maintain the fish
Autoclave Zeal Way G154DWS Prepare the materials
BHI Aerobic Coolaber Cat#PM0640 BHI medium was prepared, wherein 100 mL medium included 3.7 g BHI powder.
BHI Anaerobic Coolaber Cat#PM0640 BHI medium was prepared and divided into anaerobic tubes under the anaerobic system.
Biochemical incubator LongYue Co., Ltd SPX For fish and plates
Biosafety cabinet Haier HR40-IIA2 Sterile treatment and testing
Bleaching agent of 0.02 g/L NaClO XILONG SCIENTIFIC Co., Ltd. CAS: 7681-52-9 Working solution with sodium hypochlorite (NaClO) concentration: Diluted with 8% sodium hypochlorite aqueous solution or 166.6 uL 6% sodium hypochlorite with 500 mL distilled water.
Blood plates sheep blood:Solarbio Cat. NO. TX0030 Sterile-defibrinated sheep blood was added into TSA to prepare 5% blood plates.
Cell culture flask Corning 430639 To culture fish
CM-Dil dyes Molecular Probes Cat#C7000   To label the bacteria
Constant temperature shaking incubator Peiving Co., Ltd HZQ-X100 Bacterial culture
Database NCBI Bacteria and Archaea database Link: Archaea FTP: ftp://ftp.ncbi.nlm.nih.gov/refseq/TargetedLoci/Archaea/
Bacteria FTP: ftp://ftp.ncbi.nlm.nih.gov/refseq/TargetedLoci/Bacteria/
Disposable Pasteur pipette biosharp bs-xh-03l Used to change water, and transfer eggs
Disposable petri dish biosharp BS-90-D To culture fish
DNA kits Solaribio Cat#D1600 Bacterial genomic DNA extraction kits 
Electric pipette SCILOGEX Levo me Change water
Exiguobacterium NCBI database No.MK178504 2019-JPP-ESN
GZM Sea salt:LANDEBAO Co., Ltd. No Cat Composed of 1 L of water and 1.5 mL of sea salt solution (40 g/L), autoclaved. The content of sea salt in the GZM solution was 60 mg/L.
Laboratory pure water system Hitech Co., Ltd Prima-S15 Prepare the agents
Microscope Nikon SMZ18 With fluorescent light to observe fish larvae
PCR kits TIANGEN Cat#ET101 Taq DNA Polymerase kit
Pipette LABSELECT  sp-013-10 Change water
Povidone iodine (PVP-I) Aladdin Lot#H1217005 Aqueous solution povidone iodine 0.4 g/L pure water.
Timing converter PinYi Co., Ltd AL-06 To regulate the light
TSA plates tryptone:Oxoid ;
soy peptone:Solarbio ;NaCl:Biosharp;
agar powder:BioFroxx.
tryptone:LP0042B;
soy peptone:Cat#S9500;
NaCl:BS112;
agar powder:9002-18-0.
TSA plates were prepared with 400 mL medium containing 6 g tryptone, 2 g soy peptone, 2 g NaCl, 6 g agar powder.
TSB Aerobic tryptone:Oxoid ;
soy peptone:Solarbio ;NaCl:Biosharp;
tryptone:LP0042B;
soy peptone:Cat#S9500;
NaCl:BS112;
TSB medium was prepared, wherein 400 mL medium included 6 g tryptone, 2 g soy peptone, and 2 g NaCl.
TSB Anaerobic tryptone:Oxoid ;
soy peptone:Solarbio ;NaCl:Biosharp;
tryptone:LP0042B;
soy peptone:Cat#S9500;
NaCl:BS112;
TSB medium was prepared and divided into the anaerobic tubes under the anaerobic system.
Ultra-clean workbench Airtech SW-CJ-2FD Sterile treatment and testing
Ultra-pure flow system for fish culture Marine Biological Equipment company No Cat Produce water for fish
Vibrio NCBI database No.MK178501 2019-JPP-ESN

References

  1. Sieber, M., Traulsen, A., Schulenburg, H., Douglas, A. E. On the evolutionary origins of host-microbe associations. Proc Natl Acad Sci U S A. 118 (9), e2016487118 (2021).
  2. Sommer, F., Backhed, F. The gut microbiota–masters of host development and physiology. Nat Rev Microbiol. 11 (4), 227-238 (2013).
  3. Kim, S., Jazwinski, S. M. The gut microbiota and healthy aging: A mini-review. Gerontology. 64 (6), 513-520 (2018).
  4. Milani, C., et al. The first microbial colonizers of the human gut: Composition, activities, and health implications of the infant gut microbiota. Microbiol Mol Biol Rev. 81 (4), e00036 (2017).
  5. De Vos, W. M., Tilg, H., Van Hul, M., Cani, P. D. Gut microbiome and health: Mechanistic insights. Gut. 71 (5), 1020-1032 (2022).
  6. Shi, N., Li, N., Duan, X., Niu, H. Interaction between the gut microbiome and mucosal immune system. Mil Med Res. 4 (1), 14 (2017).
  7. Liu, B. N., Liu, X. T., Liang, Z. H., Wang, J. H. Gut microbiota in obesity. World J Gastroenterol. 27 (25), 3837-3850 (2021).
  8. Aron-Wisnewsky, J., Warmbrunn, M. V., Nieuwdorp, M., Clément, K. Metabolism and metabolic disorders and the microbiome: The intestinal microbiota associated with obesity, lipid metabolism, and metabolic health-pathophysiology and therapeutic strategies. Gastroenterology. 160 (2), 573-599 (2021).
  9. Chen, Y. W., Zhou, J. H., Wang, L. Role and mechanism of gut microbiota in human disease. Front Cell Infect Microbiol. 11, 625913 (2021).
  10. Hao, W. Z., Li, X. J., Zhang, P. W., Chen, J. X. A review of antibiotics, depression, and the gut microbiome. Psychiatry Res. 284, 112691 (2020).
  11. Nadal, A. L., et al. gut immunity: Using the zebrafish model to understand fish health. Front Immunol. 11, 114 (2020).
  12. Asadi, A., et al. Obesity and gut-microbiota-brain axis: A narrative review. J Clin Lab Anal. 36 (5), e24420 (2022).
  13. Mlynarska, E., et al. The role of the microbiome-brain-gut axis in the pathogenesis of depressive disorder. Nutrients. 14 (9), 1921 (2022).
  14. Yu, Y. J., Raka, F., Adeli, K. The role of the gut microbiota in lipid and lipoprotein metabolism. J Clin Med. 8 (12), 2227 (2019).
  15. Al-Asmakh, M., Zadjali, F. Use of germ-free animal models in microbiota-related research. J Microbiol Biotechnol. 25 (10), 1583-1588 (2015).
  16. Melancon, E., et al. Best practices for germ-free derivation and gnotobiotic zebrafish husbandry. Methods Cell Biol. 138, 61-100 (2017).
  17. Bhattarai, Y., Kashyap, P. C. Germ-free mice model for studying host-microbial interactions. Methods Mol Biol. 1438, 123-135 (2016).
  18. Wang, X. N., Wu, C. W., Wei, H. Humanized germ-free mice for investigating the intervention effect of commensal microbiome on cancer immunotherapy. Antioxid Redox Signal. 37 (16), 1291-1302 (2022).
  19. Jia, P. P., et al. Role of germ-free animal models in understanding interactions of gut microbiota to host and environmental health: A special reference to zebrafish. Environ Pollut. 279, 116925 (2021).
  20. Gootenberg, D. B., Turnbaugh, P. J. Companion animals symposium: Humanized animal models of the microbiome. J Anim Sci. 89 (5), 1531-1537 (2011).
  21. Hintze, K. J., et al. Broad scope method for creating humanized animal models for animal health and disease research through antibiotic treatment and human fecal transfer. Gut Microbes. 5 (2), 183-191 (2014).
  22. Kamareddine, L., Najjar, H., Sohail, M. U., Abdulkader, H., Al-Asmakh, M. The microbiota and gut-related disorders: Insights from animal models. Cells. 9 (11), 2401 (2020).
  23. Rogala, A. R., Oka, A., Sartor, R. B. Strategies to dissect host-microbial immune interactions that determine mucosal homeostasis vs. Intestinal inflammation in gnotobiotic mice. Front Immunol. 11, 214 (2020).
  24. Rawls, J. F., Samuel, B. S., Gordon, J. I. Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc Natl Acad Sci U S A. 101 (13), 4596-4601 (2004).
  25. Bates, J. M., et al. Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation. Dev Biol. 297 (2), 374-386 (2006).
  26. Choi, T. Y., Choi, T. I., Lee, Y. R., Choe, S. K., Kim, C. H. Zebrafish as an animal model for biomedical research. Exp Mol Med. 53 (3), 310-317 (2021).
  27. Xia, H., et al. Zebrafish: An efficient vertebrate model for understanding role of gut microbiota. Mol Med. 28 (1), 161 (2022).
  28. Parichy, D. M., Elizondo, M. R., Mills, M. G., Gordon, T. N., Engeszer, R. E. Normal table of postembryonic zebrafish development: Staging by externally visible anatomy of the living fish. Dev Dyn. 238 (12), 2975-3015 (2009).
  29. Pham, L. N., Kanther, M., Semova, I., Rawls, J. F. Methods for generating and colonizing gnotobiotic zebrafish. Nat Protoc. 3 (12), 1862-1875 (2008).
  30. Shan, Y., et al. Immersion infection of germ-free zebrafish with listeria monocytogenes induces transient expression of innate immune response genes. Front Microbiol. 6, 373 (2015).
  31. Arias-Jayo, N., Alonso-Saez, L., Ramirez-Garcia, A., Pardo, M. A. Zebrafish axenic larvae colonization with human intestinal microbiota. Zebrafish. 15 (2), 96-106 (2018).
  32. Singleman, C., Holtzman, N. G. Growth and maturation in the zebrafish, danio rerio: A staging tool for teaching and research. Zebrafish. 11 (4), 396-406 (2014).
  33. Clift, D., Richendrfer, H., Thorn, R. J., Colwill, R. M., Creton, R. High-throughput analysis of behavior in zebrafish larvae: Effects of feeding. Zebrafish. 11 (5), 455-461 (2014).
  34. Nascimento, M. D., Schorer, M., Dos Santos, J. C. E., Rocha, M. S. A., Pedreira, M. M. Live and frozen Artemia nauplii for catfish (steindachner, 1876) larvae in different salinities. Trop Anim Health Prod. 52 (2), 653-659 (2020).
  35. Jia, P. P., et al. Breaking the mold: The first report on germ-free adult marine medaka (oryzias melastigma) models. bioRxiv. , (2023).
  36. Avdesh, A., et al. Regular care and maintenance of a zebrafish (Danio rerio) laboratory: An introduction. JoVE. (69), e4196 (2012).
  37. Wilson, C. Aspects of larval rearing. ILAR J. 53 (2), 169-178 (2012).
  38. Aleström, P. a. -. O., et al. Zebrafish: Housing and husbandry recommendations. Lab Anim. 54 (3), 213-224 (2020).
  39. Brand, M., Granato, M., Nüsslein-Volhard, C. Keeping and raising zebrafish. Zebrafish. , (2002).
  40. Nursyirwani, N., et al. Phenotype and genotype of lactic acid bacteria (lab) isolated from the tiger grouper Epinephelus fuscoguttatus alimentary tract. F1000Res. 6, 1984 (2017).
  41. Karolenko, C., Desilva, U., Muriana, P. M. Microbial profiling of biltong processing using culture-dependent and culture-independent microbiome analysis. Foods. 12 (4), 844 (2023).
  42. Jia, P. P., et al. Chronic exposure to graphene oxide (go) induced inflammation and differentially disturbed the intestinal microbiota in zebrafish. Environ Sci Nano. 6 (8), 2452-2469 (2019).
  43. Sun, B. L., et al. Probiotic supplementation mitigates the developmental toxicity of perfluorobutanesulfonate in zebrafish larvae. Sci Total Environ. 799, 149458 (2021).
  44. Qian, H. F., Liu, G. F., Lu, T., Sun, L. W. Developmental neurotoxicity of microcystis aeruginosa in the early life stages of zebrafish. Ecotoxicol Environ Saf. 151, 35-41 (2018).
  45. Bertotto, L. B., Catron, T. R., Tal, T. Exploring interactions between xenobiotics, microbiota, and neurotoxicity in zebrafish. Neurotoxicology. 76, 235-244 (2020).
  46. Jia, P. P., et al. Bacteriophage-based techniques for elucidating the function of zebrafish gut microbiota. Appl Microbiol Biotechnol. 107 (7-8), 2039-2059 (2023).
  47. Xin, G. Y., et al. Gut bacteria vibrio sp. And aeromonas sp. Trigger the expression levels of proinflammatory cytokine: First evidence from the germ-free zebrafish. Fish Shellfish Immunol. 106, 518-525 (2020).
  48. Dremova, O., et al. Sterility testing of germ-free mouse colonies. Front Immunol. 14, 1275109 (2023).
  49. Lam, S. H., Chua, H. L., Gong, Z., Lam, T. J., Sin, Y. M. Development and maturation of the immune system in zebrafish, danio rerio: A gene expression profiling, in situ hybridization and immunological study. Dev Comp Immunol. 28 (1), 9-28 (2004).
  50. Rolig, A. S., Parthasarathy, R., Burns, A. R., Bohannan, B. J. M., Guillemin, K. Individual members of the microbiota disproportionately modulate host innate immune responses. Cell Host Microbe. 18 (5), 613-620 (2015).
  51. Stressmann, F. A., et al. Mining zebrafish microbiota reveals key community-level resistance against fish pathogen infection. ISME J. 15 (3), 702-719 (2021).
  52. Guitton, E., et al. Production of germ-free fast-growing broilers from a commercial line for microbiota studies. JoVE. (160), e61148 (2020).
  53. Rea, V., Bell, I., Ball, T., Van Raay, T. Gut-derived metabolites influence neurodevelopmental gene expression and wnt signaling events in a germ-free zebrafish model. Microbiome. 10 (1), 132 (2022).
  54. Russo, P., et al. Zebrafish gut colonization by mcherry-labelled lactic acid bacteria. Appl Microbiol Biotechnol. 99 (8), 3479-3490 (2015).
  55. Rawls, J. F., Mahowald, M. A., Ley, R. E., Gordon, J. I. Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell. 127 (2), 423-433 (2006).

Play Video

Citer Cet Article
Jia, P., Liu, X., Wu, M., Li, Y., Zhang, L., Pei, D. Generation, Maintenance, and Identification of Germ-Free Zebrafish Models from Larvae to Juvenile Stages. J. Vis. Exp. (206), e66512, doi:10.3791/66512 (2024).

View Video